Cite this paper:
Chuanjie QIN, Ting SHAO, Xufeng LIAO, Yang HE, Jun WANG, Peng HU. Diurnal expression of circadian clock genes period 1 and period 3 in Pelteobagrus vachellii[J]. Journal of Oceanology and Limnology, 2021, 39(2): 652-660

Diurnal expression of circadian clock genes period 1 and period 3 in Pelteobagrus vachellii

Chuanjie QIN1,2, Ting SHAO1,2, Xufeng LIAO1,2, Yang HE1,2, Jun WANG1,2, Peng HU1,2
1 Key Laboratory of Sichuan Province for Fishes Conservation and Utilization in the Upper Reaches of the Yangtze River, Neijiang Normal University, Neijiang 641112, China;
2 College of Life Science, Neijiang Normal University, Neijiang 641112, China
Abstract:
Circadian clock genes are crucial for generating and sustaining most rhythmic daily functions in the animal kingdom, which entrain the rhythms of biochemical, physiological, and behavioural processes. To better understand the molecular oscillations of the circadian rhythms in darkbarbel catfish (Pelteobagrus vachellii), we isolated and characterized two circadian clock genes in P. vachellii, period 1 (per1), and period 3 (per3). The circadian clock gene per1 was found to encode a 1 428-amino acid polypeptide, including PER-ARNT-SIM (PAS) dimerisation domains, a PAS-associated C-terminal motif (PAC), a short mutable domain (S/M), and a nuclear export signal (NES). The 4 902-bp per3 cDNA includes an open reading frame encoding a 1 292-amino acid residue polypeptide with a PER-ARNT-SIM (PAS) domain, cytoplasmic localisation domain (CLD), interaction site (TIS), and a nuclear localisation signal (NLS). The per1 and per3 gene was constitutively expressed in all examined tissues. Moreover, per1 expression within a light/dark cycles showed rhythmic expression in the diencephalon, brain, liver and intestine, with the acrophase at 15:15, 12:52, 7:51, and 12:55, respectively. Daily expression of per3 was rhythmic in the diencephalon, brain, liver and intestine, with the acrophase at 8:15, 9:54, 10:39, and 10:25 h, respectively. These findings expand our understanding of circadian mechanism at the molecular level in this species.
Key words:    cDNA|circadian rhythm|diurnal expression|Pelteobagrus vachellii|period 1|period 3   
Received: 2019-10-13   Revised: 2020-02-07
Tools
PDF (1925 KB) Free
Print this page
Add to favorites
Email this article to others
Authors
Articles by Chuanjie QIN
Articles by Ting SHAO
Articles by Xufeng LIAO
Articles by Yang HE
Articles by Jun WANG
Articles by Peng HU
References:
Balsalobre A. 2002. Clock genes in mammalian peripheral tissues. Cell and Tissue Research, 309:193-199, https://doi.org/10.1007/s00441-002-0585-0.
Beale A, Guibal C, Tamai T K, Klotz L, Cowen S, Peyric E, Reynoso V H, Yamamoto Y, Whitmore D. 2013. Circadian rhythms in Mexican blind cavefish Astyanax mexicanus in the lab and in the field. Nature Communications, 4:2 769, https://doi.org/10.1038/ncomms3769.
Bell-Pedersen D, Cassone V M, Earnest D J, Golden S S, Hardin P E, Thomas T L, Zoran M J. 2005. Circadian rhythms from multiple oscillators:lessons from diverse organisms. Nature Reviews Genetics, 6(7):544-556, https://doi.org/10.1038/nrg1633.
Cavallari N, Frigato E, Vallone D, Fröhlich N, Lopez-Olmeda J F, Foà A, Berti R, Sánchez-Vázquez F J, Bertolucci C, Foulkes N S. 2011. A blind circadian clock in cavefish reveals that opsins mediate peripheral clock photoreception. PLoS Biology, 9(9):e1001142, https://doi.org/10.1371/journal.pbio.1001142.
Chen S H, Qiao H, Fu H T, Sun S M, Zhang W Y, Jin S B, Gong Y S, Jiang S F, Xiong W Y, Wu Y. 2017. Molecular cloning, characterization, and temporal expression of the clock genes period and timeless in the oriental river prawn Macrobrachium nipponense during female reproductive development. Comparative Biochemistry and Physiology Part A:Molecular & Integrative Physiology, 207:43-51, https://doi.org/10.1016/j.cbpa.2017.02.011.
Del Pozo A, Montoya A, Vera L M, Sánchez-Vázquez F J. 2012. Daily rhythms of clock gene expression, glycaemia and digestive physiology in diurnal/nocturnal European seabass. Physiology & Behavior, 106(4):446-450, https://doi.org/10.1016/j.physbeh.2012.03.006.
Delaunay F, Thisse C, Marchand O, Laudet V, Thisse B. 2000. An inherited functional circadian clock in zebrafish embryos. Science, 289(5477):297-300, https://doi.org/10.1126/science.289.5477.297.
Eide E J, Woolf M F, Kang H, Woolf P, Hurst W, Camacho F, Vielhaber E L, Giovanni A, Virshup D M. 2005. Control of mammalian circadian rhythm by CKIε-regulated proteasome-mediated PER2 degradation. Molecular and Cellular Biology, 25(7):2 795-2 807, https://doi.org/10.1128/MCB.25.7.2795-2807.2005.
Froy O, Chapnik N, Miskin R. 2006. Long-lived αMUPA transgenic mice exhibit pronounced circadian rhythms. American Journal of Physiology-Endocrinology and Metabolism, 291(5):E1 017-E1 024, https://doi.org/10.1152/ajpendo.00140.2006.
Green C B, Besharse J C. 2004. Retinal circadian clocks and control of retinal physiology. Journal of Biological Rhythms, 19(2):91-102, https://doi.org/10.1177/0748730404263002.
Hastings M H. 2000. Circadian clockwork:two loops are better than one. Nature Reviews Neuroscience, 1(2):143-146, https://doi.org/10.1038/35039080.
Kamae Y, Tanaka F, Tomioka K. 2010. Molecular cloning and functional analysis of the clock genes, Clock and cycle, in the firebrat Thermobia domestica. Journal of Insect Physiology, 56(9):1 291-1 299, https://doi.org/10.1016/j.jinsphys.2010.04.012.
Kaneko M, Hernandez-Borsetti N, Cahill G M. 2006. Diversity of zebrafish peripheral oscillators revealed by luciferase reporting. Proceedings of the National Academy of Sciences of the United States of America, 103(39):14 614-14 619, https://doi.org/10.1073/pnas.0606563103.
Kewley R J, Whitelaw M L, Chapman-Smith A. 2004. The mammalian basic helix-loop-helix/PAS family of transcriptional regulators. The International Journal of Biochemistry & Cell Biology, 36(2):189-204, https://doi.org/10.1016/S1357-2725(03)00211-5.
Klein D C, Moore R Y, Reppert S M. 1991. Suprachiasmatic Nucleus:the Mind's Clock. Oxford University Press, New York, 467p.
Lee C, Etchegaray J P, Cagampang F R A, Loudon A S I, Reppert S M. 2001. Posttranslational mechanisms regulate the mammalian circadian clock. Cell, 107(7):855-867, https://doi.org/10.1016/S0092-8674(01)00610-9.
Lee C, Weaver D R, Reppert S M. 2004. Direct association between mouse PERIOD and CKIε is critical for a functioning circadian clock. Molecular and Cellular Biology, 24(2):584-594, https://doi.org/10.1128/MCB.24.2.584-594.2004.
Livak K J, Schmittgen T D. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCt method. Methods, 25(4):402-408, https://doi.org/10.1006/meth.2001.1262.
Martín-Robles Á J, Isorna E, Whitmore D, Muñoz-Cueto J A, Pendón C. 2011. The clock gene Period3 in the nocturnal flatfish Solea senegalensis:molecular cloning, tissue expression and daily rhythms in central areas. Comparative Biochemistry and Physiology Part A:Molecular & Integrative Physiology, 159(1):7-15, https://doi.org/10.1016/j.cbpa.2011.01.015.
Martín-Robles Á J, Whitmore D, Sánchez-Vázquez F J, Pendón C, Muñoz-Cueto J A. 2012. Cloning, tissue expression pattern and daily rhythms of Period1, Period2, and Clock transcripts in the flatfish Senegalese sole, Solea senegalensis. Journal of Comparative Physiology B, 182(5):673-685, https://doi.org/10.1007/s00360-012-0653-z.
Okamura H. 2004. Clock genes in cell clocks:roles, actions, and mysteries. Journal of Biological Rhythms, 19(5):388-399, https://doi.org/10.1177/0748730404269169.
Panda S, Hogenesch J B, Kay S A. 2002. Circadian rhythms from flies to human. Nature, 417(6886):329-335, https://doi.org/10.1038/417329a.
Park J G, Park Y J, Sugama N, Kim S J, Takemura A. 2007. Molecular cloning and daily variations of the Period gene in a reef fish Siganus guttatus. Journal of Comparative Physiology A, 193(4):403-411, https://doi.org/10.1007/s00359-006-0194-6.
Patiño M A L, Rodríguez-Illamola A, Conde-Sieira M, Soengas J L, Míguez J M. 2011. Daily rhythmic expression patterns of Clock1a, Bmal1, and Per1 genes in retina and hypothalamus of the rainbow trout, Oncorhynchus mykiss. Chronobiology International, 28(5):381-389, https://doi.org/10.3109/07420528.2011.566398.
Ponting C P, Aravind L. 1997. PAS:a multifunctional domain family comes to light. Current Biology, 7(11):R674-R677, https://doi.org/10.1016/S0960-9822(06)00352-6.
Qin C J, Gong Q, Wen Z Y, Zou Y C, Yuan D Y, Shao T, Li H T. 2017. Comparative analysis of the liver transcriptome of Pelteobagrus vachellii with an alternative feeding time.
Comparative Biochemistry and Physiology Part D:Genomics and Proteomics, 22:131-138, https://doi.org/10.1016/j.cbd.2017.04.001.
Qin C J, Shao T. 2015. The Clock gene clone and its circadian rhythms in Pelteobagrus vachelli. Chinese Journal of Oceanology and Limnology, 33(3):597-603, https://doi.org/10.1007/s00343-015-4167-x.
Reddy P, Zehring W A, Wheeler D A, Pirrotta V, Hadfield C, Hall J C, Rosbash M. 1984. Molecular analysis of the period locus in Drosophila melanogaster and identification of a transcript involved in biological rhythms. Cell, 38(3):701-710, https://doi.org/10.1016/0092-8674(84)90265-4.
Robinson I, Reddy A B. 2014. Molecular mechanisms of the circadian clockwork in mammals. FEBS Letters, 588(15):2 477-2 483, https://doi.org/10.1016/j.febslet.2014.06.005.
Sánchez J A, Madrid J A, Sánchez-Vázquez F J. 2010. Molecular cloning, tissue distribution, and daily rhythms of expression of per1 gene in European sea bass (Dicentrarchus labrax).
Chronobiology International, 27(1):19-33, https://doi.org/10.3109/07420520903398633.
Tei H, Okamura H, Shigeyoshi Y, Fukuhara C, Ozawa R, Hirose M, Sakaki Y. 1997. Circadian oscillation of a mammalian homologue of the Drosophila period gene. Nature, 389(6650):512-516, https://doi.org/10.1038/39086.
Velarde E, Haque R, Iuvone P M, Azpeleta C, Alonso-Gómez A L, Delgado M J. 2009. Circadian clock genes of goldfish, Carassius auratus:cDNA cloning and rhythmic expression of period and cryptochrome transcripts in retina, liver, and gut. Journal of Biological Rhythms, 24(2):104-113, https://doi.org/10.1177/0748730408329901.
Vera L M, Negrini P, Zagatti C, Frigato E, Sánchez-Vázquez F J, Bertolucci C. 2013. Light and feeding entrainment of the molecular circadian clock in a marine teleost (Sparus aurata). Chronobiology International, 30(5):649-661, https://doi.org/10.3109/07420528.2013.775143.
Wang H. 2008. Comparative analysis of Period Genes in teleost fish genomes. Journal of Molecular Evolution, 67:29-40, https://doi.org/10.1007/s00239-008-9121-5.
Yáñez J, Busch J, Anadón R, Meissl H. 2009. Pineal projections in the zebrafish (Danio rerio):overlap with retinal and cerebellar projections. Neuroscience, 164(4):1 712-1 720, https://doi.org/10.1016/j.neuroscience.2009.09.043.
Yang R B, Xie C X, Wei K J, Zheng W Y, Lei C S, Feng K. 2006. The daily feeding rhythms of juvenile yellow catfish, Pelteobagrus fulvidraco at different feeding frequencies. Journal of Huazhong Agricultural University, 25(3):274-276. (in Chinese with English abstract)
Young M W. 1998. The molecular control of circadian behavioral rhythms and their entrainment in Drosophila. Annual Review of Biochemistry, 67:135-152, https://doi.org/10.1146/annurev.biochem.67.1.135.
Zheng K K, Zhu X M, Han D, Yang Y X, Lei W, Xie S Q. 2010. Effects of dietary lipid levels on growth, survival and lipid metabolism during early ontogeny of Pelteobagrus vachelli larvae. Aquaculture, 299(1-4):121-127, https://doi.org/10.1016/j.aquaculture.2009.11.028.
Ziv L, Levkovitz S, Toyama R, Falcon J, Gothilf Y. 2005. Functional development of the zebrafish pineal gland:light-induced expression of period2 is required for onset of the circadian clock. Journal of Neuroendocrinology, 17(5):314-320, https://doi.org/10.1111/j.1365-2826.2005.01315.x.
Copyright © Haiyang Xuebao