Cite this paper:
Xiaoyue SONG, Yi ZHOU, Jiangning ZENG, Lu SHOU, Xiaomei ZHANG, Shidong YUE, Wei GAO, Weihua FENG, Zhifu WANG, Ping DU. Distinct root system acclimation patterns of seagrass Zostera japonica in sediments of different trophic status: a research by X-ray computed tomography[J]. Journal of Oceanology and Limnology, 2021, 39(6): 2267-2280

Distinct root system acclimation patterns of seagrass Zostera japonica in sediments of different trophic status: a research by X-ray computed tomography

Xiaoyue SONG1, Yi ZHOU2, Jiangning ZENG1, Lu SHOU1, Xiaomei ZHANG2, Shidong YUE2, Wei GAO3, Weihua FENG4, Zhifu WANG4, Ping DU1
1 Key Laboratory of Marine Ecosystem Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou 310012, China;
2 CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China;
3 College of Tropical Crops, Hainan University, Haikou 570228, China;
4 Key Laboratory of Engineering Oceanography, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou 310012, China
Abstract:
Conspecific seagrass living in differing environments may develop different root system acclimation patterns. We applied X-ray computed tomography (CT) for imaging and quantifying roots systems of Zostera japonica collected from typical oligotrophic and eutrophic sediments in two coastal sites of northern China, and determined sediment physicochemical properties that might influence root system morphology, density, and distribution. The trophic status of sediments had little influence on the Z. japonica root length, and diameters of root and rhizome. However, Z. japonica in oligotrophic sediment developed the root system with longer rhizome node, deeper rhizome distribution, and larger allocation to below-ground tissues in order to acquire more nutrients and relieve the N deficiency. And the lower root and rhizome densities of Z. japonica in eutrophic sediment were mainly caused by fewer shoots and shorter longevity, which was resulted from the more serious sulfide inhibition. Our results systematically revealed the effect of sediment trophic status on the phenotypic plasticity, quantity, and distribution of Z. japonica root system, and demonstrated the feasibly of X-ray CT in seagrass root system research.
Key words:    Zostera japonica|root system|acclimation pattern|sediment|trophic status|X-ray computed tomography   
Received: 2020-10-30   Revised: 2020-11-28
Tools
PDF (3056 KB) Free
Print this page
Add to favorites
Email this article to others
Authors
Articles by Xiaoyue SONG
Articles by Yi ZHOU
Articles by Jiangning ZENG
Articles by Lu SHOU
Articles by Xiaomei ZHANG
Articles by Shidong YUE
Articles by Wei GAO
Articles by Weihua FENG
Articles by Zhifu WANG
Articles by Ping DU
References:
Abe M, Yokota K, Kurashima A, Maegawa M. 2009. Temperature characteristics in seed germination and growth of Zostera japonica Ascherson & Graebner from Ago Bay, Mie Prefecture, central Japan. Fisheries Science, 75(4):921-927, http://doi.org/10.1007/s12562-009-0123-z.
Apostolaki E T, Holmer M, Santinelli V, Karakassis I. 2018. Species-specific response to sulfide intrusion in native and exotic Mediterranean seagrasses under stress. Marine Environmental Research, 134:85-95, http://doi.org/10.1016/j.marenvres.2017.12.006.
Atkinson M S, Smith S V. 1983. C:N:P ratios of benthic marine plants. Limnology and Oceanography, 28(3):568-574, http://doi.org/10.4319/lo.1983.28.3.0568.
Beca-Carretero P, Guihéneuf F, Winters G, Stengel D B. 2019. Depth-induced adjustment of fatty acid and pigment composition suggests high biochemical plasticity in the tropical seagrass Halophila stipulacea. Marine Ecology Progress Series, 608:105-117, http://doi.org/10.3354/meps12816.
Bercovich M V, Schubert N, Saá A C A, Silva J, Horta P A. 2019. Multi-level phenotypic plasticity and the persistence of seagrasses along environmental gradients in a subtropical lagoon. Aquatic Botany, 157:24-32, http://doi.org/10.1016/j.aquabot.2019.06.003.
Blaser S R G A, Schlüter S, Vetterlein D. 2018. How much is too much?-Influence of X-ray dose on root growth of faba bean (Vicia faba) and barley (Hordeum vulgare). PLoS One, 13(3):e0193669, http://doi.org/10.1371/journal.pone.0193669.
Borovec O, Vohník M. 2018. Ontogenetic transition from specialized root hairs to specific root-fungus symbiosis in the dominant Mediterranean seagrass Posidonia oceanica. Scientific Report, 8:10773, http://doi.org/10.1038/s41598-018-28989-4.
Borum J, Pedersen O, Greve T M, Frankovich T A, Zieman J C, Fourqurean J W, Madden C J. 2005. The potential role of plant oxygen and sulphide dynamics in die-off events of the tropical seagrass, Thalassia testudinum. Journal of Ecology, 93(1):148-158, http://doi.org/10.1111/j.1365-2745.2004.00943.x.
Bradley M P, Stolt M H. 2006. Landscape-level seagrass-sediment relations in a coastal lagoon. Aquatic Botany, 84(2):121-128, http://doi.org/10.1016/j.aquabot.2005.08.003.
Cabaço S, Machás R, Santos R. 2009. Individual and population plasticity of the seagrass Zostera noltii along a vertical intertidal gradient. Estuarine, Coastal and Shelf Science, 82(2):301-308, http://doi.org/10.1016/j.ecss. 2009.01.020.
Calleja M L, Marbà N, Duarte C M. 2007. The relationship between seagrass (Posidonia oceanica) decline and sulfide porewater concentration in carbonate sediments. Estuarine, Coastal and Shelf Science, 73(3-4):583-588, http://doi.org/10.1016/j.ecss.2007.02.016.
Cambridge M L, Fraser M W, Holmer M, Kuo J, Kendrick G A. 2012. Hydrogen sulfide intrusion in seagrasses from Shark Bay, Western Australia. Marine and Freshwater Research, 63(11):1027-1038, http://doi.org/10.1071/MF12022.
Connell E L, Colmer T D, Walker D I. 1999. Radial oxygen loss from intact roots of Halophila ovalis as a function of distance behind the root tip and shoot illumination. Aquatic Botany, 63(3-4):219-228, http://doi.org/10.1016/S0304-3770(98)00126-0.
Delgard M L, Deflandre B, Kochoni E, Avaro A, Cesbron F, Bichon S, Poirier D, Anschutz P. 2016. Biogeochemistry of dissolved inorganic carbon and nutrients in seagrass(Zostera noltei) sediments at high and low biomass. Estuarine, Coastal and Shelf Science, 179:12-22, http://doi.org/10.1016/j.ecss.2016.01.012.
Duarte C M. 1990. Seagrass nutrient content. Marine Ecology Progress Series, 67(2):201-207, http://doi.org/10.3354/meps067201.
Duarte C M, Merino M, Agawin N S R, Uri J, Fortes M D, Gallegos M E, Marbá N, Hemminga M A. 1998. Root production and belowground seagrass biomass. Marine Ecology Progress Series, 171:97-108, http://doi.org/10.3354/meps171097.
Erftemeijer P L A, Middelburg J J. 1993. Sediment-nutrient interactions in tropical seagrass beds:a comparison between a terrigenous and a carbonate sedimentary environment in South Sulawesi (Indonesia). Marine Ecology Progress Series, 102:187-198, http://doi.org/10.3354/meps102187.
Ettinger C L, Voerman S E, Lang J M, Stachowicz J J, Eisen J A. 2017. Microbial communities in sediment from Zostera marina patches, but not the Z. marina leaf or root microbiomes, vary in relation to distance from patch edge. PeerJ, 5:e3246, http://doi.org/10.7717/peerj.3246.
Gao W, Blaser S R G A, Schlüter S, Shen J B, Vetterlein D. 2019a. Effect of localised phosphorus application on root growth and soil nutrient dynamics in situ-comparison of maize (Zea mays) and faba bean (Vicia faba) at the seedling stage. Plant and Soil, 441(1):469-483, http://doi.org/10.1007/s11104-019-04138-2.
Gao W, Schlüter S, Blaser S R G A, Shen J B, Vetterlein D. 2019b. A shape-based method for automatic and rapid segmentation of roots in soil from X-ray computed tomography images:Rootine. Plant and Soil, 441(1):643-655, http://doi.org/10.1007/s11104-019-04053-6.
Hovey R K, Cambridge M L, Kendrick G A. 2011. Direct measurements of root growth and productivity in the seagrasses Posidonia australis and P. sinuosa. Limnology and Oceanography, 56(1):394-402, http://doi.org/10.4319/lo.2011.56.1.0394.
Hovey R K, Cambridge M L, Kendrick G A. 2012. Season and sediment nutrient additions affect root architecture in the temperate seagrasses Posidonia australis and P. sinuosa. Marine Ecology Progress Series, 446:23-30, http://doi.org/10.3354/meps09483.
Isaksen M F, Finster K. 1996. Sulphate reduction in the root zone of the seagrass Zostera noltii on the intertidal flats of a coastal lagoon (Arcachon, France). Marine Ecology Progress Series, 137:187-194, http://doi.org/10.3354/meps137187.
Jensen S, Bell S. 2001. Seagrass growth and patch dynamics:cross-scale morphological plasticity. Plant Ecology, 155(2):201-217, http://doi.org/10.1023/A:1013286731345.
Jiang Z J, Zhao C Y, Yu S, Liu S L, Cui L J, Wu Y C, Fang Y, Huang X P. 2019. Contrasting root length, nutrient content and carbon sequestration of seagrass growing in offshore carbonate and onshore terrigenous sediments in the South China Sea. Science of the Total Environment, 662:151-159, http://doi.org/10.1016/j.scitotenv.2019.01.175.
Johnson M G, Andersen C P, Phillips D L, Kaldy J E. 2016. Zostera marina root demography in an intertidal estuarine environment measured using minirhizotron technology. Marine Ecology Progress Series, 557:123-132, http://doi.org/10.3354/meps11867.
Kaestner A, Schneebeli M, Graf F. 2006. Visualizing threedimensional root networks using computed tomography. Geoderma, 136(1-2):459-469, http://doi.org/10.1016/j.geoderma.2006.04.009.
Kamp-Nielsen L, Vermaat J E, Wesseling I, Borum J and Geertz-Hansen O. 2002. Sediment properties along gradients of siltation in South-east Asia. Estuarine, Coastal and Shelf Science, 54(1):127-137, http://doi.org/10.1006/ecss.2001.0822.
Kiswara W, Behnke N, van Avesaath P, Huiskes A H L, Erftemeijer P L A, Bouma T J. 2009. Root architecture of six tropical seagrass species, growing in three contrasting habitats in Indonesian waters. Aquatic Botany, 90(3):235-245, http://doi.org/10.1016/j.aquabot.2008.10.005.
Koebernick N, Weller U, Huber K, Schlüter S, Vogel H J, Jahn R, Vereecken H, Vetterlein D. 2014. In situ visualization and quantification of three-dimensional root system architecture and growth using X-ray computed tomography. Vadose Zone Journal, 13(8):1-10, http://doi.org/10.2136/vzj2014.03.0024.
Koren K, Brodersen K E, Jakobsen S L, Kühl M. 2015. Optical sensor nanoparticles in artificial sediments-a new tool to visualize O2 dynamics around the rhizome and roots of seagrasses. Environmental Science and Technology, 49(4):2286-2292, http://doi.org/10.1021/es505734b.
Lamers L P M, Govers L L, Janssen I C J M, Geurts J J M, Van der Welle M E W, Van Katwijk M M, Van der Heide T, Roelofs J G M, Smolders A J P. 2013. Sulfide as a soil phytotoxin-a review. Frontiers in Plant Science, 4:268, http://doi.org/10.3389/fpls.2013.00268.
Li H B, Ma Q H, Li H G, Zhang F S, Rengel Z, Shen J B. 2014. Root morphological responses to localized nutrient supply differ among crop species with contrasting root traits. Plant and Soil, 376(1-3):151-163, https://doi.org/10.1007/s11104-013-1965-9.
Li H C, Zhang P D, Li W T, Yang X L, Hu C Y, Li C J. 2019. Quantitative distribution and ecological characteristics of seagrass beds in the coastal area of Moye Island, Yellow Sea. Marine Science, 43(4):46-51. (in Chinese with English abstract)
Martin B C, Bougoure J, Ryan M H, Bennett W W, Colmer T D, Joyce N K, Olsen Y S, Kendrick G A. 2019. Oxygen loss from seagrass roots coincides with colonisation of sulphide-oxidising cable bacteria and reduces sulphide stress. ISME Journal, 13(3):707-719, https://doi.org/10.1038/s41396-018-0308-5.
McDonald A M, Prado P, Heck K L, Fourqurean J W, Frankovich T A, Dunton K H, Cebrian J. 2016. Seagrass growth, reproductive, and morphological plasticity across environmental gradients over a large spatial scale. Aquatic Botany, 134:87-96, https://doi.org/10.1016/j.aquabot.2016.07.007.
Miki S. 1933. On the sea-grasses in Japan (1):Zostera and Phyllospadix, with special reference to morphological and ecological characters. The Botanical Magazine, 47(564):842-862, https://doi.org/10.15281/jplantres1887.47.842.
Pedersen M Ø, Kristensen E. 2015. Sensitivity of Ruppia maritima and Zostera marina to sulfide exposure around roots. Journal of Experimental Marine Biology and Ecology, 468:138-145, https://doi.org/10.1016/j.jembe.2015.04.004.
Perez M, Duarte C M, Romero J, Sand-Jensen K, Alcoverro T. 1994. Growth plasticity in Cymodocea nodosa stands:the importance of nutrient supply. Aquatic Botany, 47(3-4):249-264, https://doi.org/10.1016/0304-3770(94)90056-6.
Povidisa K, Delefosse M, Holmer M. 2009. The formation of iron plaques on roots and rhizomes of the seagrass Cymodocea serrulata (R. Brown) Ascherson with implications for sulphide intrusion. Aquatic Botany, 90(4):303-308, https://doi.org/10.1016/j.aquabot.2008.11.008.
Rubio L, Linares-Rueda A, García-Sánchez M J, Fernández J A. 2007. Ammonium uptake kinetics in root and leaf cells of Zostera marina L. Journal of Experimental Marine Biology and Ecology, 352(2):271-279, https://doi.org/10.1016/j.jembe.2007.07.024.
Short F, Carruthers T, Dennison W, Waycott M. 2007. Global seagrass distribution and diversity:a bioregional model. Journal of Experimental Marine Biology and Ecology, 350(1-2):3-20, https://doi.org//10.1016/j.jembe.2007.06.012.
Stapel J, Aarts T L, van Duynhoven B H M, de Groot J D, van den Hoogen P H W, Hemminga M A. 1996. Nutrient uptake by leaves and roots of the seagrass Thalassia hemprichii in the Spermonde Archipelago, Indonesia. Marine Ecology Progress Series, 134(1-3):195-206, https://doi.org/10.3354/meps134195.
Touchette B W, Burkholder J M. 2000. Review of nitrogen and phosphorus metabolism in seagrasses. Journal of Experimental Marine Biology and Ecology, 250(1-2):133-167, https://doi.org/10.1016/S0022-0981(00)00195-7.
Tracy S R, Roberts J A, Black C R, McNeill A, Davidson R, Mooney S J. 2010. The X-factor:visualizing undisturbed root architecture in soils using X-ray computed tomography. Journal of Experimental Botany, 61(2):311-313, https://doi.org/10.1093/jxb/erp386.
Vermaat J E. 2009. Linking clonal growth patterns and ecophysiology allows the prediction of meadow-scale dynamics of seagrass beds. Perspectives in Plant Ecology, Evolution and Systematics, 11(2):137-155, https://doi.org/10.1016/j.ppees.2009.01.002.
Vohník M, Borovce O, Kolaříková Z, Sudová R, Réblová M. 2019. Extensive sampling and high-throughput sequencing reveal Posidoniomyces atricolor gen. et sp. nov. (Aigialaceae, Pleosporales) as the dominant root mycobiont of the dominant Mediterranean seagrass Posidonia oceanica. MycoKeys, 55:59-86, https://doi.org/10.3897/mycokeys.55.35682.
Zhang X M, Lin H Y, Song X Y, Xu S C, Yue S D, Gu R T, Xu S, Zhu S Y, Zhao Y J, Zhang S Y, Han G X, Wang A D, Sun T, Zhou Y. 2019. A unique meadow of the marine angiosperm Zostera japonica, covering a large area in the turbid intertidal Yellow River Delta, China. Science of the Total Environment, 686:118-130, https://doi.org/10.1016/j.scitotenv.2019.05.320.
Zhang X M, Zhou Y, Liu P, Wang F, Liu B J, Liu X J, Xu Q, Yang H S. 2014. Temporal pattern in the bloom-forming macroalgae Chaetomorpha linum and Ulva pertusa in seagrass beds, Swan Lake lagoon, North China. Marine Pollution Bulletin, 89(1-2):229-238, https://doi.org/10.1016/j.marpolbul.2014.09.054.
Zhang X M, Zhou Y, Liu P, Wang F, Liu X J, Yang H S. 2015. Temporal pattern in biometrics and nutrient stoichiometry of the intertidal seagrass Zostera japonica and its adaptation to air exposure in a temperate marine lagoon(China):Implications for restoration and management. Marine Pollution Bulletin, 94(1-2):103-113, https://doi.org/10.1016/j.marpolbul.2015.03.004.
Zhang X M, Zhou Y, Xu S C, Wang P M, Zhao P, Yue S D, Gu R T, Song X Y, Xu S, Liu J X, Wang X D. 2020. Differences in reproductive effort and sexual recruitment of the seagrass Zostera japonica between two geographic populations in northern China. Marine Ecology Progress Series, 638:65-81, https://doi.org/10.3354/meps13248.
Zhou Y, Zhang F S, Yang H S, Zhang S M, Ma X N. 2003. Comparison of effectiveness of different ashing auxiliaries for determination of phosphorus in natural waters, aquatic organisms and sediments by ignition method. Water Research, 37(16):3 875-3 882, https://doi.org/10.1016/S0043-1354(03)00267-7.
Copyright © Haiyang Xuebao