Cite this paper:
Qiu HE, Fenglin TIAN, Xiaokun YANG, Ge CHEN. Lagrangian eddies in the Northwestern Pacific Ocean[J]. Journal of Oceanology and Limnology, 2022, 40(1): 66-77

Lagrangian eddies in the Northwestern Pacific Ocean

Qiu HE1, Fenglin TIAN1,2, Xiaokun YANG1,3, Ge CHEN1,2
1 Department of Marine Technology, College of Information Science and Engineering, Ocean University of China, Qingdao 266100, China;
2 Laboratory for Regional Oceanography and Numerical Modeling, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, China;
3 Key Laboratory of Urban Land Resources Monitoring and Simulation, Ministry of Natural Resources, Shenzhen 518034, China
Abstract:
The Lagrangian eddies in the western Pacific Ocean are identified and analysed based on Maps of Sea Level Anomaly (MSLA) data from 1998 to 2018. By calculating the Lagrangian eddy advected by the AVISO velocity field, we analyzed the variations in Lagrangian eddies and the average transport effects on different time scales. By introducing the Niño coefficient, the lag response of the Lagrangian eddy to El Niño is found. These data are helpful to further explore the role of mesoscale eddies in ocean energy transfer. Through normalized chlorophyll data, we observed chlorophyll aggregation and hole effects caused by Lagrangian eddies. These findings demonstrate the important role of Lagrangian eddies in material transport. The transportation volume of the Lagrangian eddy is calculated quantitatively, and several major transport routes have been identified, which helps us to more accurately and objectively estimate the transport capacity of Lagrangian eddies in the western Pacific Ocean.
Key words:    Lagrangian coherent structure (LCS)|mesoscale eddy|distribution character|material transport   
Received: 2020-10-16   Revised:
Tools
PDF (2488 KB) Free
Print this page
Add to favorites
Email this article to others
Authors
Articles by Qiu HE
Articles by Fenglin TIAN
Articles by Xiaokun YANG
Articles by Ge CHEN
References:
Abernathey R, Haller G. 2018. Transport by lagrangian vortices in the eastern Pacific. Journal of Physical Oceanography, 48(3): 667-685.
Aksamit N O, Sapsis T P, Haller G. 2019. Machine-learning ocean dynamics from lagrangian drifter trajectories. arXiv preprint arXiv: 1909.12895.
AVISO Satellite Altimetry Data. 2020. Gridded sea level heights and derived variables. https:www.aviso.altimetry.fr/index.php?id=1271. Accessed on 2020-10-10.
Beron-Vera F J, Hadjighasem A, Xia Q, Olascoaga M J, Haller G. 2019. Coherent lagrangian swirls among submesoscale motions. Proceedings of the National Academy of Sciences of the United States of America, 116(37): 18251-18256.
Beron-Vera F J, Olascoaga M J, Haller G, Farazmand M, Triñanes J, Wang Y. 2015. Dissipative inertial transport patterns near coherent lagrangian eddies in the ocean. Chaos: An Interdisciplinary Journal of Nonlinear Science, 25(8): 087412.
Blazevski D, Haller G. 2014. Hyperbolic and elliptic transport barriers in three-dimensional unsteady flows. Physica D: Nonlinear Phenomena, 273-274: 46-62.
Chelton D B, Gaube P, Schlax M G, Early J J, Samelson R M. 2011a. The influence of nonlinear mesoscale eddies on near-surface oceanic chlorophyll. Science, 334(6054): 328-332.
Chelton D B, Schlax M G, Samelson R M, de Szoeke R A. 2007. Global observations of large oceanic eddies. Geophysical Research Letters, 34(15): L15606.
Chelton D B, Schlax M G, Samelson R M. 2011b. Global observations of nonlinear mesoscale eddies. Progress in Oceanography, 91(2): 167-216.
Ding M R, Lin P F, Liu H L, Chai F. 2018. Increased eddy activity in the northeastern Pacific during 1993-2011. Journal of Climate, 31(1): 387-399.
Ding M R, Lin P F, Liu H L, Hu A X, Liu C Y. 2020. Lagrangian eddy kinetic energy of ocean mesoscale eddies and its application to the northwestern Pacific. Scientific Reports, 10(1): 12791.
Dong C M, McWilliams J C, Liu Y, Chen D K. 2014. Global heat and salt transports by eddy movement. Nature Communications, 5(1): 3294.
Hadjighasem A, Farazmand M, Blazevski D, Froyland G, Haller G. 2017. A critical comparison of Lagrangian methods for coherent structure detection. Chaos: An Interdisciplinary Journal of Nonlinear Science, 27(5): 053104.
Hadjighasem A, Haller G. 2014. Geodesic transport barriers in Jupiter’s atmosphere: a video-based analysis. SIAM Review, 58(1): 69-89.
Haller G, Beron-Vera F J. 2012. Geodesic theory of transport barriers in two-dimensional flows. Physica D: Nonlinear Phenomena, 241(20): 1680-1702.
Haller G, Beron-Vera F J. 2013. Coherent lagrangian vortices: the black holes of turbulence. Journal of Fluid Mechanics, 731: R4.
Haller G, Daniel K, Florian K. 2018. Material barriers to diffusive and stochastic transport. Proceedings of the National Academy of Sciences of the United States of America, 115(37): 9074-9079.
Haller G, Hadjighasem A, Farazmand M, Huhn F. 2016. Defining coherent vortices objectively from the vorticity. Journal of Fluid Mechanics, 795: 136-173.
Haller G, Yuan G. 2000. Lagrangian coherent structures and mixing in two-dimensional turbulence. Physica D: Nonlinear Phenomena, 147(3-4): 352-370.
Haller G. 2015. Lagrangian coherent structures. Annual Review of Fluid Mechanics, 47: 137-162.
Harrison C S, Siegel D A, Mitarai S. 2013. Filamentation and eddy-eddy interactions in marine larval accumulation and transport. Marine Ecology Progress Series, 472: 27-44.
Hasunuma K, Yoshida K. 1978. Splitting of the subtropical gyre in the western North Pacific. Journal of Oceanography, 34(4): 160-172.
Hogan P J, Hurlburt H E. 2000. Impact of upper ocean-topographical coupling and isopycnal outcropping in Japan/East Sea models with to 1/8° to 1/64° resolution. Journal of Physical Oceanography, 30(10): 2535-2561.
Huhn F, van Rees W M, Gazzola M, Rossinelli D, Haller C, Koumoutsakos P. 2015. Quantitative flow analysis of swimming dynamics with coherent lagrangian vortices. Chaos: An Interdisciplinary Journal of Nonlinear Science, 25(8): 087405.
Katsanoulis S, Farazmand M, Serra M, Haller G. 2020. Vortex boundaries as barriers to diffusive vorticity transport in two-dimensional flows. Physical Review Fluids, 5(2): 024701.
Kouketsu S, Tomita H, Oka E, Hosoda S, Kobayashi T, Sato K. 2012. The role of meso-scale eddies in mixed layer deepening and mode water formation in the western north pacific. Journal of Oceanography, 68(1): 63-77.
Lin P F, Chai F, Xue H J, Xiu P. 2014. Modulation of decadal oscillation on surface chlorophyll in the kuroshio extension. Journal of Geophysical Research: Oceans, 119(1): 187-199.
Lin P F, Liu H L, Ma J, Li Y W. 2019. Ocean mesoscale structure-induced air-sea interaction in a high-resolution coupled model. Atmospheric and Oceanic Science Letters, 12(2): 98-106.
Lin P F, Ma J F, Chai F, Xiu P, Liu H L. 2020. Decadal variability of nutrients and biomass in the southern region of kuroshio extension. Progress in Oceanography, 188: 102441.
Liu Y J, Chen G, Sun M, Liu S, Tian F L. 2016. A parallel SLA-based algorithm for global mesoscale eddy identification. Journal of Atmospheric and Oceanic Technology, 33(12): 2743-2754.
Mizuno K, White W B. 1983. Annual and interannual variability in the Kuroshio current system. Journal of Physical Oceanography, 13(10): 1847-1867.
National Climate Centre. 2020. ENSO. https:cmdp.ncc-cma.net/pred/cn_enso.php?product=cn_enso_nino_indices. Accessed on 2020-10-10.
NRT 3.0 exp product. This dataset was produced by SSALTO/DUACS and distributed by AVISO+ with support from CNES, developed and validated in collaboration with E. Mason at IMEDEA. https:www.aviso.altimetry.fr/.
Onu K, Huhn F, Haller G. 2015. LCS tool: a computational platform for lagrangian coherent structures. Journal of Computational Science, 7: 26-36.
Peacock T, Haller G. 2013. Lagrangian coherent structures: the hidden skeleton of fluid flows. Physics Today, 66(2): 41-47.
Qiu B, Chen S M. 2005. Variability of the kuroshio extension jet, recirculation gyre, and mesoscale eddies on decadal time scales. Journal of Physical Oceanography, 35(11): 2090-2103.
Serra M, Haller G. 2017. Efficient computation of null geodesics with applications to coherent vortex detection. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 473(2199): 20160807.
Su Z, Wang J B, Klein P, Thompson A F, Menemenlis D. 2018. Ocean submesoscales as a key component of the global heat budget. Nature Communications, 9: 775.
Sun B W, Liu C Y, Wang F. 2020. Eddy induced SST variation and heat transport in the western North Pacific Ocean. Journal of Oceanology and Limnology, 38(1): 1-15.
Wang Y, Beron-Vera F J, Olascoaga M J. 2016. The life cycle of a coherent Lagrangian Agulhas ring. Journal of Geophysical Research: Oceans, 121(6): 3944-3954.
Wang Y, Olascoaga M J, Beron-Vera F J. 2015. Coherent water transport across the South Atlantic. Geophysical Research Letters, 42(10): 4072-4079.
Xu L X, Li P L, Xie S P, Liu Q Y, Liu C, Gao W D. 2016. Observing mesoscale eddy effects on mode-water subduction and transport in the North Pacific. Nature Communications, 7: 10505.
Yang G, Wang F, Li Y L, Lin P F. 2013. Mesoscale eddies in the northwestern subtropical Pacific Ocean: statistical characteristics and three-dimensional structures. Journal of Geophysical Research: Oceans, 118(4): 1906-1925.
Zhang C, Liu H L, Li C Y, Lin P F. 2019. Impacts of mesoscale sea surface temperature anomalies on the meridional shift of North Pacific storm track. International Journal of Climatology, 39(13): 5124-5139.
Zhang C, Liu H L, Xie J B, Li C Y, Lin P F. 2020. Impacts of increased SST resolution on the north pacific storm track in ERA-interim. Advances in Atmospheric Sciences, 37(11): 1256-1266.
Zhang Z G, Wang W, Qiu B. 2014. Oceanic mass transport by mesoscale eddies. Science, 345(6194): 322-324.
Copyright © Haiyang Xuebao