Cite this paper:
Weidong SUN, Xiuqi SHANG. In-situ experiments reveal mineralization details of porphyry copper deposits[J]. Journal of Oceanology and Limnology, 2022, 40(1): 110-112

In-situ experiments reveal mineralization details of porphyry copper deposits

Weidong SUN1,2,3, Xiuqi SHANG1,2,3
1 Center of Deep Sea Research, Institute of Oceanology, Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China;
2 University of Chinese Academy of Sciences, Beijing 100049, China;
3 Laboratory for Marine Geology, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, China
Abstract:
In-situ hydrothermal experiments using diamond-anvil cell show that sulfate and sulfide are the dominant sulfur species under P-T conditions similar to those of porphyry magmas. No sulfite was identified using in-situ Raman spectrometer. This supports that porphyry copper mineralization is controlled by sulfate reduction, rather than sulfite disproportionation.
Key words:    diamond cell|sulfate|sulfide|porphyry deposits|magnetite crisis   
Received: 2021-01-29   Revised:
Tools
PDF (459 KB) Free
Print this page
Add to favorites
Email this article to others
Authors
Articles by Weidong SUN
Articles by Xiuqi SHANG
References:
Ballard J R, Palin J M, Campbell I H. 2002. Relative oxidation states of magmas inferred from Ce(IV)/Ce(III) in zircon: application to porphyry copper deposits of northern Chile. Contributions to Mineralogy and Petrology, 144(3): 347-364, https://doi.org/10.1007/s00410-002-0402-5.
Colin A, Schmidt C, Pokrovski G S et al. 2020. In situ determination of sulfur speciation and partitioning in aqueous fluid-silicate melt systems. Geochemical Perspectives Letters, 14: 31-35, https://doi.org/10.7185/geochemlet.2020.
Huang R F, Keppler H. 2015. Anhydrite stability and the effect of Ca on the behavior of sulfur in felsic magmas. American Mineralogist, 100(1): 257-266, https://doi.org/10.2138/am-2015-4959.
Jenner F E, O’Neill H S C, Arculus R J et al. 2012. The magnetite crisis in the evolution of arc-related magmas and the initial concentration of Au, Ag and Cu. Journal of Petrology, 53(5): 1 089, https://doi.org/10.1093/petrology/egs015.
Lee C T A, Luffi P, Chin E J et al. 2012. Copper systematics in arc magmas and implications for crust-mantle differentiation. Science, 336(6077): 64-68, https://doi.org/10.1126/science.1217313.
Liang H Y, Campbell I H, Allen C et al. 2006. Zircon Ce4+/Ce3+ ratios and ages for Yulong ore-bearing porphyries in eastern Tibet. Mineralium Deposita, 41(2): 152-159, https://doi.org/10.1007/s00126-005-0047-1.
Liang H Y, Sun W D, Su W C et al. 2009. Porphyry copper-gold mineralization at Yulong, China, promoted by decreasing redox potential during magnetite alteration. Economic Geology, 104(4): 587-596, https://doi.org/10.2113/gsecongeo.104.4.587.
Liu H, Liao R Q, Zhang L P et al. 2020. Plate subduction, oxygen fugacity, and mineralization. Journal of Oceanology and Limnology, 38(1): 64-74, https://doi.org/10.1007/s00343-019-8339-y.
Richards J P. 2015. The oxidation state, and sulfur and Cu contents of arc magmas: implications for metallogeny. Lithos, 233: 27-45, https://doi.org/10.1016/j.lithos.2014.12.011.
Sillitoe R H. 2010. Porphyry copper systems. Economic Geology, 105(1): 3-41, https://doi.org/10.2113/gsecongeo.105.1.3.
Sun W D, Arculus R J, Kamenetsky V S et al. 2004. Release of gold-bearing fluids in convergent margin magmas prompted by magnetite crystallization. Nature, 431(7011): 975-978, https://doi.org/10.1038/nature02972.
Sun W D, Binns R A, Fan A C et al. 2007. Chlorine in submarine volcanic glasses from the eastern Manus basin. Geochimica et Cosmochimica Acta, 71(6): 1 542-1 552, https://doi.org/10.1016/j.gca.2006.12.003.
Sun W D, Huang R F, Li H et al. 2015. Porphyry deposits and oxidized magmas. Ore Geology Reviews, 65: 97-131, https://doi.org/10.1016/j.oregeorev.2014.09.004.
Sun W D, Liang H Y, Ling M X et al. 2013. The link between reduced porphyry copper deposits and oxidized magmas. Geochimica et Cosmochimica Acta, 103: 263-275, https://doi.org/10.1016/j.gca.2012.10.054.
Sun W D, Wang J T, Zhang L P et al. 2017. The formation of porphyry copper deposits. Acta Geochimica, 36(1): 9-15, https://doi.org/10.1007/s11631-016-0132-4.
Zhang C C, Sun W D, Wang J T et al. 2017. Oxygen fugacity and porphyry mineralization: a zircon perspective of Dexing porphyry Cu deposit, China. Geochimica et Cosmochimica Acta, 206: 343-363, https://doi.org/10.1016/j.gca.2017.03.013.
Zhang X, Li L F, Du Z F et al. 2020. Discovery of supercritical carbon dioxide in a hydrothermal system. Science Bulletin, 65(11): 958-964, https://doi.org/10.1016/j.scib.2020.03.023.
Copyright © Haiyang Xuebao