Cite this paper:
Tangrong HE, Fenfen ZHANG, Yali WANG, Xiaogang CHEN, Jinzhou DU. Characterization of dissolved organic matter in submarine groundwater from a salt marsh in Chongming Island, China[J]. Journal of Oceanology and Limnology, 2022, 40(1): 128-141

Characterization of dissolved organic matter in submarine groundwater from a salt marsh in Chongming Island, China

Tangrong HE1, Fenfen ZHANG1, Yali WANG1, Xiaogang CHEN3, Jinzhou DU1,2
1 State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200241, China;
2 Institute of Eco-Chongming (IEC), Shanghai 202162, China;
3 Key Laboratory of Coastal Environment and Resources of Zhejiang Province, School of Engineering, Westlake University, Hangzhou 310024, China
Abstract:
Salt marshes are research hotspots of the carbon cycle in coastal zones because large amounts of atmospheric carbon dioxide is fixed by salt marshes vegetation and stored in its biomass and soil. Dissolved organic carbon (DOC) in submarine groundwater (well water and pore water) in salt marshes plays an important role in advective exchange between the salt marshes and coastal waters. However, the molecular characteristics of DOC in salt marsh groundwater are poorly understood because of the complex DOC structures and hydrodynamic process. In this study, fluorescent components and refractory DOC (RDOC) in submarine groundwater from a salt marsh (Chongming Island, China) and adjacent coastal water were characterized by fluorescence spectroscopy and nuclear magnetic resonance spectroscopy. The fluorescent components identified by parallel factor analysis indicated that humic-like substances dominated the chromophoric dissolved organic matter in the submarine groundwater. The chromophoric dissolved organic matter and dissolved organic matter in the submarine groundwater had non-conservative behaviors because of additions from terrestrial humic substances. The nuclear magnetic resonance spectra indicated that bioactive substances (carbohydrates) contributed only 13.2%–14.8% of the dissolved organic matter in the submarine groundwater but carboxyl-rich alicyclic molecules (CRAMs), the main components of RDOC, contributed 64.5% of the dissolved organic matter. Carbohydrates and CRAMs contributed 16.4% and 61.7% of the dissolved organic matter in the coastal water, similar to the contributions for submarine groundwater. The DOC concentration in submarine groundwater was 386±294 μmol/L, which was significantly higher than that in coastal water (91±19 μmol/L). The high DOC concentrations and >60% relative RDOC content suggested that submarine groundwater may be an important source of RDOC to coastal seawater. This information will be helpful for estimating the climate effects of salt marsh blue carbon.
Key words:    submarine groundwater|dissolved organic carbon|fluorescence|refractory dissolved organic carbon|salt marsh|Chongming Island   
Received: 2020-10-19   Revised:
Tools
PDF (1983 KB) Free
Print this page
Add to favorites
Email this article to others
Authors
Articles by Tangrong HE
Articles by Fenfen ZHANG
Articles by Yali WANG
Articles by Xiaogang CHEN
Articles by Jinzhou DU
References:
Aluwihare L I, Repeta D J. 1999. A comparison of the chemical characteristics of oceanic DOM and extracellular DOM produced by marine algae. Marine Ecology Progress Series, 186: 105-117, https://doi.org/10.3354/meps186105.
Bauer J E. 2002. Chapter 8-Carbon isotopic composition of DOM. In: Hansell D A, Carlson C A eds. Biogeochemistry of Marine Dissolved Organic Matter. Elsevier, Amsterdam. p.405-453, https://doi.org/10.1016/B978-012323841-2/50010-5.
Birdwell J E, Engel A S. 2010. Characterization of dissolved organic matter in cave and spring waters using UV-Vis absorbance and fluorescence spectroscopy. Organic Geochemistry, 41(3): 270-280, https://doi.org/10.1016/j.orggeochem.2009.11.002.
Bouillon S, Borges A V, Castañeda-Moya E, Diele K, Dittmar T, Duke N C, Kristensen E, Lee S Y, Marchand C, Middelburg J J, Rivera-Monroy V H, Smith III T J, Twilley R R. 2008. Mangrove production and carbon sinks: a revision of global budget estimates. Global Biogeochemical Cycles, 22(2): GB2013, https://doi.org/10.1029/2007GB003052.
Cao X Y, Aiken G R, Butler K D, Huntington T G, Balch W M, Mao J D, Schmidt-Rohr K. 2018. Evidence for major input of riverine organic matter into the ocean. Organic Geochemistry, 116: 62-76, https://doi.org/10.1016/j.orggeochem.2017.11.001.
Catalá T S, Reche I, Fuentes-Lema A, Romera-Castillo C, Nieto-Cid M, Ortega-Retuerta E, Calvo E, Álvarez M, Marrasé C, Stedmon C A, Álvarez-Salgado X A. 2015. Turnover time of fluorescent dissolved organic matter in the dark global ocean. Nature Communications, 6(1): 5 986, https://doi.org/10.1038/ncomms6986.
Changjiang Water Resources Commission. 2018. Changjiang Sediment Bulletin 2017. Changjiang Press, Wuhan. 60p. (in Chinese)
Chapelle F H, Bradley P M, Goode D J, Tiedeman C, Lacombe P J, Kaiser K, Benner R. 2009. Biochemical indicators for the bioavailability of organic carbon in ground water. Groundwater, 47(1): 108-121.
Chen M L, Price R M, Yamashita Y, Jaffé R. 2010. Comparative study of dissolved organic matter from groundwater and surface water in the Florida coastal Everglades using multi-dimensional spectrofluorometry combined with multivariate statistics. Applied Geochemistry, 25(6): 872-880, https://doi.org/10.1016/j.apgeochem.2010.03.005.
Chen X G, Santos I R, Call M, Reithmaier G M S, Maher D, Holloway C, Wadnerkar P D, Gómez-Álvarez P, Sanders C J, Li L. 2021. The mangrove CO2 pump: tidally driven pore-water exchange. Limnology and Oceanography, https://doi.org/10.1002/lno.11704.
Chen X G, Ye Q, Sanders C J, Du J Z, Zhang J. 2020. Bacterial-derived nutrient and carbon source-sink behaviors in a sandy beach subterranean estuary. Marine Pollution Bulletin, 160: 111570, https://doi.org/10.1016/j.marpolbul.2020.111570.
Chen X G, Zhang F F, Lao Y L, Wang X L, Du J Z, Santos I R. 2018. Submarine groundwater discharge-derived carbon fluxes in mangroves: an important component of blue carbon budgets?. Journal of Geophysical Research. Oceans, 123(9): 6 962-6 979, https://doi.org/10.1029/2018JC014448.
Clark C D, Aiona P, Keller J K, De Bruyn W J. 2014. Optical characterization and distribution of chromophoric dissolved organic matter (CDOM) in soil porewater from a salt marsh ecosystem. Marine Ecology Progress Series, 516: 71-83, https://doi.org/10.3354/meps10833.
Coble P G. 1996. Characterization of marine and terrestrial DOM in seawater using excitation-emission matrix spectroscopy. Marine Chemistry, 51(4): 325-346, https://doi.org/10.1016/0304-4203(95)00062-3.
Coble P G. 2007. Marine optical biogeochemistry: the chemistry of ocean color. Chemical Reviews, 107(2): 402-418, https://doi.org/10.1021/cr050350+.
Cory R M, Kaplan L A. 2012. Biological lability of streamwater fluorescent dissolved organic matter. Limnology and Oceanography, 57(5): 1 347-1 360, https://doi.org/10.4319/lo.2012.57.5.1347.
Couturier M, Nozais C, Chaillou G. 2016. Microtidal subterranean estuaries as a source of fresh terrestrial dissolved organic matter to the coastal ocean. Marine Chemistry, 186: 46-57, https://doi.org/10.1016/j.marchem.2016.08.001.
Dittmar T, Koch B, Hertkorn N, Kattner G. 2008. A simple and efficient method for the solid-phase extraction of dissolved organic matter (SPE-DOM) from seawater. Limnology and Oceanography. Methods, 6(6): 230-235, https://doi.org/10.4319/lom.2008.6.230.
Gao L, Fan D D, Li D J, Cai J G. 2010. Fluorescence characteristics of chromophoric dissolved organic matter in shallow water along the Zhejiang coasts, southeast China. Marine Environmental Research, 69(3): 187-197, https://doi.org/10.1016/j.marenvres.2009.10.004.
Gao L, Gao Y Q, Zong H B, Guo L D. 2019. Elucidating the hidden nonconservative behavior of DOM in large riverdominated estuarine and coastal environments. Journal of Geophysical Research: Oceans, 124(6): 4 258-4 271, https://doi.org/10.1029/2018JC014731.
Gao Y Q. 2018. Biogeochemistry of Chromophoric Dissolved Organic Matter and Spatiotemporal Variations of Suspended Particulate Matter in the Changjiang (Yangtze River) Estuary and the Adjacent Sea. East China Normal University, Shanghai. p.28-38. (in Chinese with English abstract)
Gonçalves-Araujo R, Stedmon C A, Heim B, Dubinenkov I, Kraberg A, Moiseev D, Bracher A. 2015. From fresh to marine waters: characterization and fate of dissolved organic matter in the Lena River delta region, Siberia. Frontiers in Marine Science, 2: 108, https://doi.org/10.3389/fmars.2015.00108.
Gu J L, Luo M, Zhang X J, Christakos G, Agusti S, Duarte C M, Wu J P. 2018. Losses of salt marsh in China: trends, threats and management. Estuarine, Coastal and Shelf Science, 214: 98-109, https://doi.org/10.1016/j.ecss.2018.09.015.
Guéguen C, Guo L D, Yamamoto-Kawai M, Tanaka N. 2007. Colored dissolved organic matter dynamics across the shelf-basin interface in the western Arctic Ocean. Journal of Geophysical Research: Oceans, 112(C5): C05038, https://doi.org/10.1029/2006JC003584.
Hansell D A. 2013. Recalcitrant dissolved organic carbon fractions. Annual Review of Marine Science, 5: 421-445, https://doi.org/10.1146/annurev-marine-120710-100757.
Heck Jr K T, Carruthers T J B, Duarte C M, Hughes A R, Kendrick G, Orth R J, Williams S W. 2008. Trophic transfers from seagrass meadows subsidize diverse marine and terrestrial consumers. Ecosystems, 11(7): 1 198-1 210, https://doi.org/10.1007/s10021-008-9155-y.
Helms J R, Stubbins A, Ritchie J D, Minor E C, Kieber D J, Mopper K. 2008. Absorption spectral slopes and slope ratios as indicators of molecular weight, source, and photobleaching of chromophoric dissolved organic matter. Limnology and Oceanography, 53(3): 955-969, https://doi.org/10.4319/lo.2008.53.3.0955.
Hertkorn N, Benner R, Frommberger M, Schmitt-Kopplin P, Witt M, Kaiser K, Kettrup A, Hedges J I. 2006. Characterization of a major refractory component of marine dissolved organic matter. Geochimica et Cosmochimica Acta, 70(12): 2 990-3 010, https://doi.org/10.1016/j.gca.2006.03.021.
Hertkorn N, Harir M, Koch B P, Michalke B, Schmitt-Kopplin P. 2013. High-field NMR spectroscopy and FTICR mass spectrometry: powerful discovery tools for the molecular level characterization of marine dissolved organic matter. Biogeosciences, 10(3): 1 583-1 624, https://doi.org/10.5194/bg-10-1583-2013.
Huang H M, Zhang L Q, Yuan L. 2007. The spatio-temporal dynamics of salt marsh vegetation for Chongming Dongtan National Nature Reserve, Shanghai. Acta Ecologica Sinica, 27(10): 4 166-4 172. (in Chinese with English abstract)
Huang T H, Chen C T A, Tseng H C, Lou J Y, Wang S L, Yang L, Kandasamy S, Gao X, Wang J T, Aldrian E, Jacinto G S, Anshari G Z, Sompongchaiyakul P, Wang B J. 2017. Riverine carbon fluxes to the South China Sea. Journal of Geophysical Research: Biogeosciences, 122(5): 1 239-1 259, https://doi.org/10.1002/2016JG003701.
Huguet A, Vacher L, Relexans S, Saubusse S, Froidefond J M, Parlanti E. 2009. Properties of fluorescent dissolved organic matter in the Gironde Estuary. Organic Geochemistry, 40(6): 706-719, https://doi.org/10.1016/j.orggeochem.2009.03.002.
Hunt J F, Ohno T. 2007. Characterization of fresh and decomposed dissolved organic matter using excitation-emission matrix fluorescence spectroscopy and multiway analysis. Journal of Agricultural and Food Chemistry, 55(6): 2 121-2 128, https://doi.org/10.1021/jf063336m.
Jiang Y, Li R, Yang Y N, Yu M D, Xi B D, Li M X, Xu Z, Gao S B, Yang C. 2019. Migration and evolution of dissolved organic matter in landfill leachate-contaminated groundwater plume. Resources, Conservation and Recycling, 151: 104463, https://doi.org/10.1016/j.resconrec.2019.104463.
Jiao N Z, Cai R H, Zheng Q, Tang K, Liu J H, Jiao F L, Wallace D, Chen F, Li C, Amann R, Benner R, Azam F. 2018. Unveiling the enigma of refractory carbon in the ocean. National Science Review, 5(4): 459-463, https://doi.org/10.1093/nsr/nwy020.
Jiao N Z, Herndl G J, Hansell D A, Benner R, Kattner G, Wilhelm S W, Kirchman D L, Weinbauer M G, Luo T W, Chen F, Azam F. 2010. Microbial production of recalcitrant dissolved organic matter: long-term carbon storage in the global ocean. Nature Reviews Microbiology, 8(8): 593-599, https://doi.org/10.1038/nrmicro2386.
Kim J, Kim Y, Kang H W, Kim S H, Rho T, Kang D J. 2020. Tracing water mass fractions in the deep western Indian Ocean using fluorescent dissolved organic matter. Marine Chemistry, 218: 103720, https://doi.org/10.1016/j.marchem.2019.103720.
Kim T H, Kwon E, Kim I, Lee S A, Kim G. 2013. Dissolved organic matter in the subterranean estuary of a volcanic island, Jeju: importance of dissolved organic nitrogen fluxes to the ocean. Journal of Sea Research, 78: 18-24, https://doi.org/10.1016/j.seares.2012.12.009.
Komada T, Reimers C E, Luther III G W, Burdige D J. 2004. Factors affecting dissolved organic matter dynamics in mixed-redox to anoxic coastal sediments. Geochimica et Cosmochimica Acta, 68(20): 4 099-4 111, https://doi.org/10.1016/j.gca.2004.04.005.
Kothawala D N, Stedmon C A, Müller R A, Weyhenmeyer G A, Köhler S J, Tranvik L J. 2014. Controls of dissolved organic matter quality: evidence from a large-scale boreal lake survey. Global Change Biology, 20(4): 1 101-1 114, https://doi.org/10.1111/gcb.12488.
Kulkarni H V, Mladenov N, Johannesson K H, Datta S. 2017. Contrasting dissolved organic matter quality in groundwater in Holocene and Pleistocene aquifers and implications for influencing arsenic mobility. Applied Geochemistry, 77: 194-205, https://doi.org/10.1016/j.apgeochem.2016.06.002.
Lam B, Baer A, Alaee M, Lefebvre B, Moser A, Williams A, Simpson A J. 2007. Major structural components in freshwater dissolved organic matter. Environmental Science & Technology, 41(24): 8 240-8 247, https://doi.org/10.1021/es0713072.
Lechtenfeld O J, Hertkorn N, Shen Y, Witt M, Benner R. 2015. Marine sequestration of carbon in bacterial metabolites. Nature Communications, 6(1): 6 711, https://doi.org/10.1038/ncomms7711.
Lee Y W, Kim G. 2007. Linking groundwater-borne nutrients and dinoflagellate red-tide outbreaks in the southern sea of Korea using a Ra tracer. Estuarine, Coastal and Shelf Science, 71(1-2): 309-317, https://doi.org/10.1016/j.ecss.2006.08.004.
Li P H, Chen L, Zhang W, Huang Q H. 2015. Spatiotemporal distribution, sources, and photobleaching imprint of dissolved organic matter in the Yangtze estuary and its adjacent sea using fluorescence and parallel factor analysis. PLoS One, 10(6): e0130852, https://doi.org/10.1371/journal.pone.0130852.
Liu J A, Yu X Q, Chen X G, Du J Z, Zhang F F. 2021. Utility of radium quartet for evaluating porewater-derived carbon to a saltmarsh nearshore water: implications for blue carbon export. Science of the Total Environment, 764: 144238, https://doi.org/10.1016/j.scitotenv.2020.144238.
Lu Q Y, He D, Pang Y, Zhang Y Z, He C, Wang Y T, Zhang H B, Shi Q, Sun Y G. 2020. Processing of dissolved organic matter from surface waters to sediment pore waters in a temperate coastal wetland. Science of the Total Environment, 742: 140491, https://doi.org/10.1016/j.scitotenv.2020.140491.
Lu Y H, Edmonds J W, Yamashita Y, Zhou B, Jaegge A, Baxley M. 2015. Spatial variation in the origin and reactivity of dissolved organic matter in Oregon-Washington coastal waters. Ocean Dynamics, 65(1): 17-32, https://doi.org/10.1007/s10236-014-0793-7.
Maher D T, Santos I R, Golsby-Smith L, Gleeson J, Eyre B D. 2013. Groundwater-derived dissolved inorganic and organic carbon exports from a mangrove tidal creek: the missing mangrove carbon sink? Limnology and Oceanography, 58(2): 475-488, https://doi.org/10.4319/lo.2013.58.2.0475.
McCaul M V, Sutton D, Simpson A J, Spence A, McNally D J, Moran B W, Goel A, O’Connor B, Hart K, Kelleher B P. 2011. Composition of dissolved organic matter within a lacustrine environment. Environmental Chemistry, 8(2): 146-154, https://doi.org/10.1071/EN10109.
McKnight D M, Boyer E W, Westerhoff P K, Doran P T, Kulbe T, Andersen D T. 2001. Spectrofluorometric characterization of dissolved organic matter for indication of precursor organic material and aromaticity. Limnology and Oceanography, 46(1): 38-48, https://doi.org/10.4319/lo.2001.46.1.0038.
McLeod E, Chmura G L, Bouillon S, Salm R, Björk M, Duarte C M, Lovelock C E, Schlesinger W H, Silliman B R. 2011. A blueprint for blue carbon: toward an improved understanding of the role of vegetated coastal habitats in sequestering CO2. Frontiers in Ecology and the Environment, 9(10): 552-560, https://doi.org/10.1890/110004.
Murphy K R, Stedmon C A, Wenig P, Bro R. 2014. OpenFluor — an online spectral library of auto-fluorescence by organic compounds in the environment. Analytical Methods, 6(3): 658-661, https://doi.org/10.1039/C3AY41935E.
Pain A J, Martin J B, Young C R, Huang L B, Valle-Levinson A. 2019. Organic matter quantity and quality across salinity gradients in conduit-vs. diffuse flow-dominated subterranean estuaries. Limnology and Oceanography, 64(3): 1 386-1 402, https://doi.org/10.1002/lno.11122.
Peter S, Shen Y, Kaiser K, Benner R, Durisch-Kaiser E. 2012. Bioavailability and diagenetic state of dissolved organic matter in riparian groundwater. Journal of Geophysical Research: Biogeosciences, 117(G4): G04006, https://doi.org/10.1029/2012JG002072.
Reithmaier G M S, Chen X G, Santos I R, Drexl M J, Holloway C, Call M, Alvarez P G, Euler S, Maher D T. 2021. Rainfall drives rapid shifts in carbon and nutrient source-sink dynamics of an urbanised, mangrove-fringed estuary. Estuarine, Coastal and Shelf Science, 249: 107064, https://doi.org/10.1016/j.ecss.2020.107064.
Roth V N, Lange M, Simon C, Hertkorn N, Bucher S, Goodall T, Griffiths R I, Mellado-Vázquez P G, Mommer L, Oram N J, Weigelt A, Dittmar T, Gleixner G. 2019. Persistence of dissolved organic matter explained by molecular changes during its passage through soil. Nature Geoscience, 12(9): 755-761, https://doi.org/10.1038/s41561-019-0417-4.
Routh J, Grossman E L, Murphy E M, Benner R. 2001. Characterization and origin of dissolved organic carbon in Yegua ground water in Brazos County, Texas. Groundwater, 39(5): 760-767, https://doi.org/10.1111/j.1745-6584.2001.tb02367.x.
Sadat-Noori M, Maher D T, Santos I R. 2016. Groundwater discharge as a source of dissolved carbon and greenhouse gases in a subtropical estuary. Estuaries and Coasts, 39(3): 639-656, https://doi.org/10.1007/s12237-015-0042-4.
Santos I R, Burnett W C, Dittmar T, Suryaputra I G N A, Chanton J. 2009. Tidal pumping drives nutrient and dissolved organic matter dynamics in a Gulf of Mexico subterranean estuary. Geochimica et Cosmochimica Acta, 73(5): 1 325-1 339, https://doi.org/10.1016/j.gca.2008.11.029.
Santos I R, Maher D T, Larkin R, Webb J R, Sanders C J. 2019. Carbon outwelling and outgassing vs. burial in an estuarine tidal creek surrounded by mangrove and saltmarsh wetlands. Limnology and Oceanography, 64(3): 996-1 013, https://doi.org/10.1002/lno.11090.
Seidel M, Beck M, Greskowiak J, Riedel T, Waska H, Suryaputra I G N A, Schnetger B, Niggemann J, Simon M, Dittmar T. 2015. Benthic-pelagic coupling of nutrients and dissolved organic matter composition in an intertidal sandy beach. Marine Chemistry, 176: 150-163, https://doi.org/10.1016/j.marchem.2015.08.011.
Seidel M, Beck M, Riedel T, Waska H, Suryaputra I G N A, Schnetger B, Niggemann J, Simon M, Dittmar T. 2014. Biogeochemistry of dissolved organic matter in an anoxic intertidal creek bank. Geochimica et Cosmochimica Acta, 140: 418-434, https://doi.org/10.1016/j.gca.2014.05.038.
Spivak A C, Sanderman J, Bowen J L, Canuel E A, Hopkinson C S. 2019. Global-change controls on soil-carbon accumulation and loss in coastal vegetated ecosystems. Nature Geoscience, 12(9): 685-692.
Stedmon C A, Bro R. 2008. Characterizing dissolved organic matter fluorescence with parallel factor analysis: a tutorial. Limnology and Oceanography: Methods, 6(11): 572-579, https://doi.org/10.4319/lom.2008.6.572.
Stedmon C A, Markager S. 2005. Resolving the variability in dissolved organic matter fluorescence in a temperate estuary and its catchment using PARAFAC analysis. Limnology and Oceanography, 50(2): 686-697, https://doi.org/10.4319/lo.2005.50.2.0686.
Suryaputra I G N A, Santos I R, Huettel M, Burnett W C, Dittmar T. 2015. Non-conservative behavior of fluorescent dissolved organic matter (FDOM) within a subterranean estuary. Continental Shelf Research, 110: 183-190, https://doi.org/10.1016/j.csr.2015.10.011.
Tait D R, Maher D T, Macklin P A, Santos I R. 2016. Mangrove pore water exchange across a latitudinal gradient. Geophysical Research Letters, 43(7): 3 334-3 341, https://doi.org/10.1002/2016GL068289.
Wang G Z, Han A Q, Chen L W, Tan E H, Lin H. 2018. Fluxes of dissolved organic carbon and nutrients via submarine groundwater discharge into subtropical Sansha Bay, China. Estuarine, Coastal and Shelf Science, 207: 269-282, https://doi.org/10.1016/j.ecss.2018.04.018.
Weishaar J L, Aiken G R, Bergamaschi B A, Fram M S, Fujii R, Mopper K. 2003. Evaluation of specific ultraviolet absorbance as an indicator of the chemical composition and reactivity of dissolved organic carbon. Environmental Science & Technology, 37(20): 4 702-4 708, https://doi.org/10.1021/es030360x.
Wickland K P, Neff J C, Aiken G R. 2007. Dissolved organic carbon in Alaskan boreal forest: sources, chemical characteristics, and biodegradability. Ecosystems, 10(8): 1 323-1 340, https://doi.org/10.1007/s10021-007-9101-4.
Yamashita Y, Jaffé R. 2008. Characterizing the interactions between trace metals and dissolved organic matter using excitation-emission matrix and parallel factor analysis. Environmental Science & Technology, 42(19): 7 374-7 379, https://doi.org/10.1021/es801357h.
Yamashita Y, Scinto L J, Maie N, Jaffé R. 2010. Dissolved organic matter characteristics across a subtropical wetland’s landscape: application of optical properties in the assessment of environmental dynamics. Ecosystems, 13(7): 1 006-1 019, https://doi.org/10.1007/s10021-010-9370-1.
Yang L Y, Chen C T A, Hong H S, Chang Y C, Lui H K. 2015. Mixing behavior and bioavailability of dissolved organic matter in two contrasting subterranean estuaries as revealed by fluorescence spectroscopy and parallel factor analysis. Estuarine, Coastal and Shelf Science, 166: 161-169, https://doi.org/10.1016/j.ecss.2014.10.018.
Zhang F F, Harir M, Moritz F, Zhang J, Witting M, Wu Y, Schmitt-Kopplin P, Fekete A, Gaspar A, Hertkorn N. 2014. Molecular and structural characterization of dissolved organic matter during and post cyanobacterial bloom in Taihu by combination of NMR spectroscopy and FTICR mass spectrometry. Water Research, 57: 280-294, https://doi.org/10.1016/j.watres.2014.02.051.
Zhang H B, Luo Y M, Liu X H, Fu C C. 2015. Current researches and prospects on the coastal blue carbon. Scientia Sinica Terrae, 45(11): 1 641-1 648, https://doi.org/10.1360/zd2015-45-11-1641. (in Chinese with English abstract)
Zhang M L, Yu G L, Wang F, Li B, Han H Z, Qi Z H, Wang T T. 2019. Terrestrial dissolved organic carbon consumption by heterotrophic bacterioplankton in the Huanghe River estuary during water and sediment regulation. Journal of Oceanology and Limnology, 37(3): 1 062-1 070, https://doi.org/10.1007/s00343-019-8108-y.
Zhao J, He Q, Wang X Y, Guo L C. 2015. Field observations on the characteristics of current and sediment of the south and north branches in the Yangtze Estuary. Resources and Environment in the Yangtze Basin, 24(1): 21-29, https://doi.org/10.11870/cjlyzyyhj201501004. (in Chinese with English abstract)
Zhou Z Z, Guo L D, Shiller A M, Lohrenz S E, Asper V L, Osburn C L. 2013. Characterization of oil components from the Deepwater horizon oil spill in the Gulf of Mexico using fluorescence EEM and PARAFAC techniques. Marine Chemistry, 148: 10-21, https://doi.org/10.1016/j.marchem.2012.10.003.
Zsolnay A, Baigar E, Jimenez M, Steinweg B, Saccomandi F. 1999. Differentiating with fluorescence spectroscopy the sources of dissolved organic matter in soils subjected to drying. Chemosphere, 38(1): 45-50, https://doi.org/10.1016/S0045-6535(98)00166-0.
Copyright © Haiyang Xuebao