Cite this paper:
Han JIANG, Chunyan LI, Bo ZHANG, Yongli WU, Qiang LIN. Roles of interleukins in antibacterial immune defense of the brood pouch in the lined seahorse Hippocampus erectus[J]. Journal of Oceanology and Limnology, 2022, 40(1): 235-244

Roles of interleukins in antibacterial immune defense of the brood pouch in the lined seahorse Hippocampus erectus

Han JIANG1,2,3, Chunyan LI1,2, Bo ZHANG1,2, Yongli WU1,2,3, Qiang LIN1,2,3
1 CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China;
2 Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China;
3 University of Chinese Academy of Sciences, Beijing 100049, China
Abstract:
Seahorse embryos are brooded in the enclosed nutrient-rich environment of the male brood pouch, which may be prone to bacterial infection. The immune responses of interleukin (IL) genes in the brood pouch have not been well studied. We identified 13 interleukins in the lined seahorse Hippocampus erectus. Tissue-specific expression analysis revealed increased mRNA expression levels of il-1β, il-18, and il-8 in the brood pouch. When challenged with lipopolysaccharide or Vibrio parahaemolyticus, il-1β and il-18 were active as part of the acute and chronic inflammatory responses, respectively. Importantly, il-8 may be involved in powerful antibacterial immune responses and may be induced by il-1β and il-18 via a process involving the nuclear factor-κB signaling pathway. These results suggest that il-1β, il-18, and il-8 may play key roles in the antibacterial immune defense of the brood pouch in male seahorses.
Key words:    lined seahorse|brood pouch|interleukin|antibacterial immunity   
Received: 2020-08-19   Revised:
Tools
PDF (1634 KB) Free
Print this page
Add to favorites
Email this article to others
Authors
Articles by Han JIANG
Articles by Chunyan LI
Articles by Bo ZHANG
Articles by Yongli WU
Articles by Qiang LIN
References:
Akira S. 2000. The role of IL-18 in innate immunity. Current Opinion in Immunology, 12(1): 59-63, https://doi.org/10.1016/s0952-7915(99)00051-5.
Biet F, Locht C, Kremer L. 2002. Immunoregulatory functions of interleukin 18 and its role in defense against bacterial pathogens. Journal of Molecular Medicine, 80(3): 147-162, https://doi.org/10.1007/s00109-001-0307-1.
Bird S, Zou J, Wang T H, Munday B, Cunningham C, Secombes C J. 2002. Evolution of interleukin-1β. Cytokine & Growth Factor Reviews, 13(6): 483-502, https://doi.org/10.1016/s1359-6101(02)00028-x.
Bo Y X, Song X H, Wu K, Hu B, Sun B Y, Liu Z J, Fu J G. 2015. Characterization of interleukin-1β as a proinflammatory cytokine in grass carp (Ctenopharyngodon idella). Fish & Shellfish Immunology, 46(2): 584-595, https://doi.org/10.1016/j.fsi.2015.07.024.
Bustin S A, Benes V, Garson J A, Hellemans J, Huggett J, Kubista M, Mueller R, Nolan T, Pfaffl M W, Shipley G L, Vandesompele J, Wittwer C T. 2009. The MIQE guidelines: Minimum Information for publication of Quantitative real-time PCR Experiments. Clinical Chemistry, 55(4): 611-622, https://doi.org/10.1373/clinchem.2008.112797.
Edgar R C. 2004. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Research, 32(5): 1 792-1 797, https://doi.org/10.1093/nar/gkh340.
Geisert R, Fazleabas A, Lucy M, Mathew D. 2012. Interaction of the conceptus and endometrium to establish pregnancy in mammals: role of interleukin 1β. Cell and Tissue Research, 349(3): 825-838, https://doi.org/10.1007/s00441-012-1356-1.
Ghosh S, Hayden M S. 2008. New regulators of NF-κB in inflammation. Nature Reviews Immunology, 8(11): 837-848, https://doi.org/10.1038/nri2423.
Hayden M S, Ghosh S. 2011. NF-κB in immunobiology. Cell Research, 21(2): 223-244, https://doi.org/10.1038/cr.2011.13.
Heled J, Drummond A J. 2010. Bayesian inference of species trees from multilocus data. Molecular Biology and Evolution, 27(3): 570-580, https://doi.org/10.1093/molbev/msp274.
Herath H M L P B, Elvitigala D A S, Godahewa G I, Umasuthan N, Whang I, Noh J K, Lee J. 2016. Molecular characterization and comparative expression analysis of two teleostean pro-inflammatory cytokines, IL-1β and IL-8, from Sebastes schlegeli. Gene, 575(2): 732-742, https://doi.org/10.1016/j.gene.2015.09.082.
Ho P Y, Byadgi O, Wang P C, Tsai M A, Liaw L L, Chen S C. 2016. Identification, molecular cloning of IL-1β and its expression profile during Nocardia seriolae infection in largemouth bass, Micropterus salmoides. International Journal of Molecular Sciences, 17(10): 1 670, https://doi.org/10.3390/ijms17101670.
Kaiser P, Rothwell L, Avery S, Balu S. 2004. Evolution of the interleukins. Developmental & Comparative Immunology, 28(5): 375-394, https://doi.org/10.1016/j.dci.2003.09.004.
Kawaguchi M, Okubo R, Harada A, Miyasaka K, Takada K, Hiroi J, Yasumasu S. 2017. Morphology of brood pouch formation in the pot-bellied seahorse Hippocampus abdominalis. Zoological Letters, 3(1): 19, https://doi.org/10.1186/s40851-017-0080-9.
Laksanawimol P, Damrongphol P, Kruatrachue M. 2006. Alteration of the brood pouch morphology during gestation of male seahorses, Hippocampus kuda. Marine and Freshwater Research, 57(5): 497-502, https://doi.org/10.1071/MF05112.
Li C, Yao C L. 2013. Molecular and expression characterizations of interleukin-8 gene in large yellow croaker (Larimichthys crocea). Fish & Shellfish Immunology, 34(3): 799-809, https://doi.org/10.1016/j.fsi.2012.12.019.
Liao C L, Zhang G R, Zhu D M, Ji W, Shi Z C, Jiang R, Fan Q X, Wei K J. 2018. Molecular cloning and expression analysis of interleukin-1β and interleukin-1 receptor type I genes in yellow catfish (Pelteobagrus fulvidraco): responses to challenge of Edwardsiella ictaluri. Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology, 223: 1-15, https://doi.org/10.1016/j.cbpb.2018.05.001.
Lin Q, Fan S H, Zhang Y H, Xu M, Zhang H X, Yang Y L, Lee A P, Woltering J M, Ravi V, Gunter H M, Luo W, Gao Z X, Lim Z W, Qin G, Schneider R F, Wang X, Xiong P W, Li G, Wang K, Min J M, Zhang C, Qiu Y, Bai J, He W M Bian C, Zhang X H, Shan D, Qu H Y, Sun Y, Gao Q, Huang L M, Shi Q, Meyer A, Venkatesh B. 2016. The seahorse genome and the evolution of its specialized morphology. Nature, 540(7633): 395-399, https://doi.org/10.1038/nature20595.
Livak K J, Schmittgen T D. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCt method. Methods, 25(4): 402-408, https://doi.org/10.1006/meth.2001.1262.
Luo W, Wang X, Qu H Y, Qin G, Zhang H X, Lin Q. 2016. Genomic structure and expression pattern of MHC IIα and IIβ genes reveal an unusual immune trait in lined seahorse Hippocampus erectus. Fish & Shellfish Immunology, 58: 521-529, https://doi.org/10.1016/j.fsi.2016.09.057.
Melamed P, Xue Y, Poon J F, Wu Q, Xie H, Yeo J, Foo T W, Chua H K. 2005. The male seahorse synthesizes and secretes a novel C-type lectin into the brood pouch during early pregnancy. The FEBS Journal, 272(5): 1 221-1 235, https://doi.org/10.1111/j.1742-4658.2005.04556.x.
Nichols R. 2001. Gene trees and species trees are not the same. Trends in Ecology & Evolution, 16(7): 358-364, https://doi.org/10.1016/s0169-5347(01)02203-0.
Oh M, Bathige S D N K, Kim Y, Lee S, Yang H, Kim M J, Lee J. 2017. A CXCL ortholog from Hippocampus abdominalis: Molecular features and functional delineation as a pro-inflammatory chemokine. Fish & Shellfish Immunology, 67: 218-227, https://doi.org/10.1016/j.fsi.2017.05.050.
Qin G, Zhang Y H, Wang X, Lin Q. 2016. Effects of anesthetic disposal on the physiological and behavioral responses of the lined seahorses, Hippocampus erectus. Journal of the World Aquaculture Society, 47(3): 387-395, https://doi.org/10.1111/jwas.12282.
Rosenqvist G, Berglund A. 2011. Sexual signals and mating patterns in Syngnathidae. Journal of Fish Biology, 78(6): 1 647-1 661, https://doi.org/10.1111/j.1095-8649.2011.02972.x.
Roth O, Solbakken M H, Tørresen O K, Bayer T, Matschiner M, Baalsrud H T, Hoff S N K, Brieuc M S O, Haase D, Hanel R, Reusch T B H, Jentoft S. 2020. Evolution of male pregnancy associated with remodeling of canonical vertebrate immunity in seahorses and pipefishes. Proceedings of the National Academy of Sciences of the United States of America, 117(17): 9 431-9 439, https://doi.org/10.1073/pnas.1916251117.
Secombes C J, Wang T, Bird S. 2011. The interleukins of fish. Developmental & Comparative Immunology, 35(12): 1 336-1 345, https://doi.org/10.1016/j.dci.2011.05.001.
Shimoyama A, Saeki A, Tanimura N, Tsutsui H, Miyake K, Suda Y, Fujimoto Y, Fukase K. 2011. Chemical synthesis of Helicobacter pylori lipopolysaccharide partial structures and their selective proinflammatory responses. Chemistry-A European Journal, 17(51): 14 464-14 474, https://doi.org/10.1002/chem.201003581.
Sugimoto M, Ohno T, Graham D Y, Yamaoka Y. 2009. Gastric mucosal interleukin-17 and -18 mRNA expression in Helicobacter pylori-induced Mongolian gerbils. Cancer Science, 100(11): 2 152-2 159, https://doi.org/10.1111/j.1349-7006.2009.01291.x.
Tharuka M D N, Bathige S D N K, Oh M, Lee S, Kim M J, Priyathilaka T T, Lee J. 2019. Molecular characterization and expression analysis of big-belly seahorse (Hippocampus abdominalis) interleukin-10 and analysis of its potent anti-inflammatory properties in LPS-induced murine macrophage RAW 264.7 cells. Gene, 685: 1-11, https://doi.org/10.1016/j.gene.2018.10.053.
Wang E L, Wang J, Long B, Wang K Y, He Y, Yang Q, Chen D F, Geng Y, Huang X L, Ouyang P, Lai W M. 2016. Molecular cloning, expression and the adjuvant effects of interleukin-8 of channel catfish (Ictalurus Punctatus) against Streptococcus iniae. Scientific Reports, 6: 29 310, https://doi.org/10.1038/srep29310.
Wang K, Lenstra J A, Liu L, Hu Q J, Ma T, Qiu Q, Liu J Q. 2018. Incomplete lineage sorting rather than hybridization explains the inconsistent phylogeny of the wisent. Communications Biology, 1: 169, https://doi.org/10.1038/s42003-018-0176-6.
Wang T M, Liang J, Xiang X W, Yuan J J, Chen X, Xiang X W, Yang J W. 2019. Functional identification and expressional responses of large yellow croaker (Larimichthys crocea) interleukin-8 and its receptor. Fish & Shellfish Immunology, 87: 470-477, https://doi.org/10.1016/j.fsi.2019.01.035.
Wang X Y, Quinn P J. 2010. Lipopolysaccharide: biosynthetic pathway and structure modification. Progress in Lipid Research, 49(2): 97-107, https://doi.org/10.1016/j.plipres.2009.06.002.
Whittington C M, Friesen C R. 2020. The evolution and physiology of male pregnancy in syngnathid fishes. Biological Reviews, 95(5): 1 252-1 272, https://doi.org/10.1111/brv.12607.
Whittington C M, Griffith O W, Qi W H, Thompson M B, Wilson A B. 2015. Seahorse brood pouch transcriptome reveals common genes associated with vertebrate pregnancy. Molecular Biology and Evolution, 32(12): 3 114-3 131, https://doi.org/10.1093/molbev/msv177.
Wilson A B, Vincent A, Ahnesjö I, Meyer A. 2001. Male pregnancy in seahorses and pipefishes (family Syngnathidae): rapid diversification of paternal brood pouch morphology inferred from a molecular phylogeny. Journal of Heredity, 92(2): 159-166, https://doi.org/10.1093/jhered/92.2.159.
Xiao Y, Yu L, Gui G, Gong Y, Wen X, Xia W, Yang H, Zhang L. 2019. Molecular cloning and expression analysis of interleukin-8 and -10 in yellow catfish and in response to bacterial pathogen infection. BioMed Research International, 2019: 9617659, https://doi.org/10.1155/2019/9617659.
Xu Q Q, Xu P, Zhou J W, Pan T S, Tuo R, Ai K, Yang D Q. 2016. Cloning and expression analysis of two proinflammatory cytokines, IL-1β and its receptor, IL-1R2, in the Asian swamp eel Monopterus albus. Molecular Biology, 50(5): 760-774, https://doi.org/10.7868/s0026898416030125.
Yang Q, Chu Q, Zhao X Y, Xu T J. 2017. Characterization of IL-1β and two types of IL-1 receptors in miiuy croaker and evolution analysis of IL-1 family. Fish & Shellfish Immunology, 63: 165-172, https://doi.org/10.1016/j.fsi.2017.02.005.
Zou J, Secombes C J. 2016. The function of fish cytokines. Biology, 5(2): 23, https://doi.org/10.3390/biology5020023.
Zou J, Yoshiura Y, Dijkstra J M, Sakai M, Ototake M, Secombes C. 2004. Identification of an interferon gamma homologue in Fugu, Takifugu rubripes. Fish & Shellfish Immunology, 17(4): 403-409, https://doi.org/10.1016/j.fsi.2004.04.015.
Copyright © Haiyang Xuebao