Cite this paper:
Wen YANG, Yangfang YE, Kaihong LU, Zhongming ZHENG, Jinyong ZHU. NMR-based metabolomic responses of freshwater gastropod Bellamya aeruginosa to MC-producing and non MC-producing Microcystis aeruginosa[J]. Journal of Oceanology and Limnology, 2022, 40(1): 260-272

NMR-based metabolomic responses of freshwater gastropod Bellamya aeruginosa to MC-producing and non MC-producing Microcystis aeruginosa

Wen YANG, Yangfang YE, Kaihong LU, Zhongming ZHENG, Jinyong ZHU
School of Marine Science, Ningbo University, Ningbo 315800, China
Abstract:
Molluscan metabolomic analysis is essential for the understanding of the regulatory mechanism of aquatic invertebrate in response to hepatotoxic microcystins (MCs) stress. To understand the system responses of the gastropod to MC exposure, metabolomic alterations caused by two strains (MC-producing and non MC-producing) of Microcystis aeruginosa were characterized indifferent biological matrices (hepatopancreas and muscle) of Bellamya aeruginosa (Gastropoda) using 1H nuclear magnetic resonance (NMR) spectroscopy combined with MCs detections after exposure for 1, 7, and 14 d. Although ELISA analysis showed that no MCs was detected in both tissues after non MC-producing M. aeruginosa exposure, MCs concentrations were increasing in the hepatopancreas (from 1.29±0.48 μg/g to 3.17±0.11 μg/g) and foot muscle (from 0.07±0.02 μg/g to 0.21±0.08 μg/g) after 14-d exposure of MC-producing M. aeruginosa. Meanwhile, we observed that MC induced significant increase in creatine, a variety of amino acids (leucine, isoleucine, valine, threonine, alanine, methionine, glutamate, aspartate, and lysine), carboxylic acids (lactate, acetate, and D-3-hydroxybutyrate), and choline and its derivatives (phosphocholine and glycerophosphocholine) but decreased the energy substance (lipids, glucose, and glycogen) in the hepatopancreas. However, no significant metabolite differences were observed in the muscle between MC-producing and non MC-producing cyanobacteria treated groups. These results suggest that MC exposure may cause hepatic energy expenditure accompanied with various metabolic disorders that involve lipid metabolism, protein catabolism, osmoregulation, glycolysis, glycogenolysis, and tricarboxylic acid (TCA) cycle. Moreover, metabolic perturbation was aggravated as the level of accumulated MCs raised over time in the MC-producing cyanobacteria treatment. These findings indicated that MCs accumulation might lead to oxidative-stress-mediated damage of mitochondria functions.
Key words:    Bellamya aeruginosa|Microcystis aeruginosa|metabolomic|nuclear magnetic resonance|microcystin   
Received: 2020-08-28   Revised:
Tools
PDF (1729 KB) Free
Print this page
Add to favorites
Email this article to others
Authors
Articles by Wen YANG
Articles by Yangfang YE
Articles by Kaihong LU
Articles by Zhongming ZHENG
Articles by Jinyong ZHU
References:
Abou Elseoud S M F A, Fattah N S A, El Din H M E, Al H A, Mossalem H, Elleboudy N. 2010. Carboxylic acids as biomarkers of Biomphalaria alexandrina snails infected with Schistosoma mansoni. Korean Journal of Parasitology, 48(2): 127-132, https://doi.org/10.3347/kjp.2010.48.2.127.
Acevedo F, Serra MÁ, Ermolli M, Clerici L, Vesterberg O. 2001. Nickel-induced proteins in human HaCaT keratinocytes: annexin II and phosphoglycerate kinase. Toxicology, 159(1-2): 33-41, https://doi.org/10.1016/S0300-483X(00)00369-3.
Amado L L, Monserrat J M. 2010. Oxidative stress generation by microcystins in aquatic animals: why and how. Environment International, 36(2): 226-235, https://doi.org/10.1016/j.envint.2009.10.010.
Amorim J, Abreu I, Rodrigues P, Peixoto D, Pinheiro C, Saraiva A, Carvalho A P, Guimarães L, Oliva-Teles L. 2019. Lymnaea stagnalis as a freshwater model invertebrate for ecotoxicological studies. Science of the Total Environment, 669: 11-28, https://doi.org/10.1016/j.scitotenv.2019.03.035.
Ansaldo M, Nahabedian D E, Holmes-Brown E, Agote M, Ansay C V, Guerrero N R V, Wider E A. 2006. Potential use of glycogen level as biomarker of chemical stress in Biomphalaria glabrata. Toxicology, 224(1-2): 119-127, https://doi.org/10.1016/j.tox.2006.04.037.
Birungi G, Li SFY. 2011. Investigation of the effect of exposure to non cytotoxic amounts of microcystins. Metabolomics, 7(4): 485-499, https://doi.org/10.1007/s11306-010-0265-0.
Bollard ME, Contel NR, Ebbels TMD, Smith L, Beckonert O, Cantor G H, Lehman-McKeeman L, Holmes E C, Lindon J C, Nicholson J K, Keun H C. 2010. NMR-based metabolic profiling identifies biomarkers of liver regeneration following partial hepatectomy in the rat. Journal of Proteome Research, 9(1): 59-69, https://doi.org/10.1021/pr900200v.
Bownik A. 2016. Harmful algae: effects of cyanobacterial cyclic peptides on aquatic invertebrates-a short review. Toxicon, 124: 26-35, https://doi.org/10.1016/j.toxicon.2016.10.017.
Calder P C. 2006. Branched-chain amino acids and immunity. The Journal of Nutrition, 136(1): 288S-293S, https://doi.org/10.1093/jn/136.1.288S.
Campos A, Vasconcelos V. 2010. Molecular mechanisms of microcystin toxicity in animal cells. International Journal of Molecular Sciences, 11(1): 268-287, https://doi.org/10.3390/ijms11010268.
Cantor G H, Beckonert O, Bollard M E, Keun H C, Ebbels T M D, Antti H, Wijsman J A, Bible R H, Breau A P, Cockerell G L, Holmes E, Lindon J C, Nicholson J K. 2013. Integrated histopathological and urinary metabonomic investigation of the pathogenesis of microcystin-LR toxicosis. Veterinary Pathology, 50(1): 159-171, https://doi.org/10.1177/0300985812443839.
Cappello T. 2020. NMR-based metabolomics of aquatic organisms. eMagRes, 9(1): 81-100, https://doi.org/10.1002/9780470034590.
Chen J, Xie P, Li L, Xu J. 2009. First identification of the hepatotoxic microcystins in the serum of a chronically exposed human population together with indication of hepatocellular damage. Toxicological Sciences, 108(1): 81-89, https://doi.org/10.1093/toxsci/kfp009.
Chen Q Y. 1987. A preliminary study on the population dynamics and annual production of Bellamya aeruginosa (Reeve) in Lake DongHu, Wuhan. Acta Hydrobiologica Sinica, 11(2): 117-130. (in Chinese with English abstract)
Clayton TA, Lindon JC, Everett JR, Charuel C, Hanton G, Le Net J L, Provost J, Nicholson J K. 2003. An hypothesis for a mechanism underlying hepatotoxin-induced hypercreatinuria. Archives of Toxicology, 77(4): 208-217, https://doi.org/10.1007/s00204-002-0431-x.
Cloarec O, Dumas ME, Trygg J, Craig A, Barton R H, Lindon J C, Nicholson J K, Holmes E. 2005. Evaluation of the orthogonal projection on latent structure model limitations caused by chemical shift variability and improved visualization of biomarker changes in 1H NMR spectroscopic metabonomic studies. Analytical Chemistry, 77(2): 517-526, https://doi.org/10.1021/ac048803i.
Cui Z H, Zhang K Y, Qu XC, Liu Q G. 2011. Construction of differentially expressed genes library of bighead carp (Aristichthys nobilis) exposed to microcystin-LR using ssh and expression profile of related genes. Fish & Shellfish Immunology, 31(6): 746-753, https://doi.org/10.1016/j.fsi.2011.07.009.
Dai H, Xiao C N, Liu H P, Tang H R. 2010. Combined NMR and LC-MS analysis reveals the metabonomic changes in Salvia miltiorrhiza Bunge induced by water depletion. Journal of Proteome Research, 9(3): 1 460-1 475, https://doi.org/10.1021/pr900995m.
Eriksson L, Andersson P L, Johansson E, Tysklind M. 2006. Megavariate analysis of environmental QSAR data. Part I-A basic framework founded on principal component analysis (PCA), partial least squares (PLS), and statistical molecular design (SMD). Molecular Diversity, 10(2): 169-186, https://doi.org/10.1007/s11030-006-9024-6.
Gérard C, Lance E. 2019. Decline of freshwater gastropods exposed to recurrent interacting stressors implying cyanobacterial proliferations and droughts. Aquatic Ecology, 53(1): 79-96, https://doi.org/10.1007/s10452-019-09674-8.
Gérard C, Poullain V, Lance E, Acou A, Brient L, Carpentier A. 2009. Influence of toxic cyanobacteria on community structure and microcystin accumulation of freshwater molluscs. Environmental Pollution, 157(2): 609-617, https://doi.org/10.1016/j.envpol.2008.08.017.
Guzman R E, Solter P F. 2002. Characterization of sublethal microcystin-LR exposure in mice. Veterinary Pathology, 39(1): 17-26, https://doi.org/10.1354/vp.39-1-17.
Hani Y M I, Prud’Homme S M, Nuzillard J M, Bonnard I, Robert C, Nott K, Ronkart S, Dedourge-Geffard O, Geffard A. 2021. 1H-NMR metabolomics profiling of zebra mussel (Dreissena polymorpha): a field-scale monitoring tool in ecotoxicological studies. Environmental Pollution, 270: 116048, https://doi.org/10.1016/j.envpol.2020.116048.
Haunerland N H, Spener F. 2003. Properties and physiological significance of fatty acid binding proteins. Advances in Molecular and Cell Biology, 33: 99-122, https://doi.org/10.1016/S1569-2558(03)33007-3.
He J, Chen J, Wu LY, Li G Y, Xie P. 2012. Metabolic response to oral microcystin-LR exposure in the rat by NMR-based metabonomic study. Journal of Proteome Research, 11(12): 5 934-5 946, https://doi.org/10.1021/pr300685g.
Huisman J, Codd G A, Paerl H W, Ibelings B W, Verspagen J M H, Visser P M. 2018. Cyanobacterial blooms. Nature Reviews Microbiology, 16(8): 471-483, https://doi.org/10.1038/s41579-018-0040-1.
Kanbak G, Inal M, Baycu C. 2001. Ethanol-induced hepatotoxicity and protective effect of betaine. Cell Biochemistry & Function, 19(4): 281-285, https://doi.org/10.1002/cbf.926.
Lance E, Desprat J, Holbech B F, Gérard C, Bormans M, Lawton L A, Edwards C, Wiegand C. 2016. Accumulation and detoxication responses of the gastropod Lymnaea stagnalis to single and combined exposures to natural (cyanobacteria) and anthropogenic (the herbicide RoundUp® Flash) stressors. Aquatic Toxicology, 177: 116-124, https://doi.org/10.1016/j.aquatox.2016.05.024.
Lavoie L, Bollen M, Stalmans W, Van De Werve G. 1991. Increased synthase phosphatase activity is responsible for the super-activation of glycogen synthase in hepatocytes from fasted obese Zucker rats. Endocrinology, 129(5): 2 674-2 678, https://doi.org/10.1210/endo-129-5-2674.
Lei K, Qiao F, Liu Q, Wei Z L, An L H, Qi H L, Cui S, LeBlanc G A. 2017. Preliminary evidence for snail deformation from a Eutrophic lake. Environmental Toxicology and Pharmacology, 53: 219-226, https://doi.org/10.1016/j.etap.2017.06.019.
Leighton F, Bergseth S, Rørtveit T, Christiansen E N, Bremer J. 1989. Free acetate production by rat hepatocytes during peroxisomal fatty acid and dicarboxylic acid oxidation. Journal of Biological Chemistry, 264(18): 10 347-10 350.
Li Y L, Li R H, Ye Y F, Mu C K, Wang C L. 2019. 1H NMR metabolic profiling revealed characteristic metabolites in mud crab Scylla paramamosain for different geographical origins. Journal of Applied Animal Research, 47(1): 314-321, https://doi.org/10.1080/09712119.2019.1623802.
Liu X L, Ji C L, Zhao J M, Wu H F. 2013. Differential metabolic responses of clam Ruditapes philippinarum to Vibrio anguillarum and Vibrio splendidus challenges. Fish & Shellfish Immunology, 35(6): 2 001-2 007, https://doi.org/10.1016/j.fsi.2013.09.014.
Lu J, Feng J H, Cai S H, Chen Z. 2017. Metabolomic responses of Haliotis diversicolor to organotin compounds. Chemosphere, 168: 860-869, https://doi.org/10.1016/j.chemosphere.2016.10.124.
Martins J C, Leão P N, Vasconcelos V. 2009. Differential protein expression in Corbicula fluminea upon exposure to a Microcystis aeruginosa toxic strain. Toxicon, 53(4): 409-416, https://doi.org/10.1016/j.toxicon.2008.12.022.
Martins J C, Vasconcelos V M. 2009. Microcystin dynamics in aquatic organisms. Journal of Toxicology and Environmental Health, Part B, 12(1): 65-82, https://doi.org/10.1080/10937400802545151.
Naddafi R, Pettersson K, Eklöv P. 2007. The effect of seasonal variation in selective feeding by zebra mussels (Dreissena polymorpha) on phytoplankton community composition. Freshwater Biology, 52(5): 823-842, https://doi.org/10.1111/j.1365-2427.2007.01732.x.
Pham T L, Utsumi M. 2018. An overview of the accumulation of microcystins in aquatic ecosystems. Journal of Environmental Management, 213: 520-529, https://doi.org/10.1016/j.jenvman.2018.01.077.
Qiu H J, Lu K H, Zheng Z M, Wang J P, Zhu J Y. 2017. Blooms of toxic cyanobacteria cause the gastropod Bellamya aeruginosa to shift its diet from planktic to benthic material. International Review of Hydrobiology, 102(3-4): 90-99, https://doi.org/10.1002/iroh.201601859.
Sabatini S E, Brena B M, Luquet C M, Julián M S, Pirez M, de Molina M D C R. 2011. Microcystin accumulation and antioxidant responses in the freshwater clam Diplodon chilensis patagonicus upon subchronic exposure to toxic Microcystisaeruginosa. EcotoxicologyandEnvironmental Safety, 74(5): 1 188-1 194, https://doi.org/10.1016/j.ecoenv.2011.03.012.
Shi L M, Huang Y X, Lu Y P, Chen F Z, Zhang M, Yu Y, Kong F X. 2018. Stocks and dynamics of particulate and dissolved organic matter in a large, shallow eutrophic lake (Taihu, China) with dense cyanobacterial blooms. Journal of Oceanology and Limnology, 36(3): 738-749, https://doi.org/10.1007/s00343-018-7031-y.
Sotton B, Paris A, Le Manach S, Blond A, Lacroix G, Millot A, Duval C, Qiao Q, Catherine A, Marie B 2017. Global metabolome changes induced by cyanobacterial blooms in three representative fish species. Science of the Total Environment, 590-591: 333-342, https://doi.org/10.1016/j.scitotenv.2017.03.016.
Stewart I, Seawright A A, Shaw G R. 2008. Cyanobacterial poisoning in livestock, wild mammals and birds—an overview. In: Hudnell H K ed. Cyanobacterial Harmful Algal Blooms: State of the Science and Research Needs. Springer, New York, USA. p.613-637, https://doi.org/10.1007/978-0-387-75865-7_28.
Strong E E, Gargominy O, Ponder W F, Bouchet P. 2008. Global diversity of gastropods (Gastropoda; Mollusca) in freshwater. Hydrobiologia, 595(1): 149-166, https://doi.org/10.1007/s10750-007-9012-6.
Sun F, Pei H Y, Hu W R, Song M M. 2012. A multi-technique approach for the quantification of Microcystis aeruginosa FACHB-905 biomass during high algae-laden periods. Environmental technology, 33(15): 1 773-1 779, https://doi.org/10.1080/09593330.2011.644868.
Tikunov A P, Johnson C B, Lee H, Stoskopf M K, Macdonald J M. 2010. Metabolomic investigations of American oysters using 1H-NMR spectroscopy. Marine Drugs, 8(10): 2 578-2 596, https://doi.org/10.3390/md8102578.
Tripathi P K, Singh A. 2004. Carbaryl induced alterations in the reproduction and metabolism of freshwater snail Lymnaea acuminata. Pesticide Biochemistry and Physiology, 79(1): 1-9, https://doi.org/10.1016/j.pestbp.2003.11.003.
Trygg J, Wold S. 2002. Orthogonal projections to latent structures (O-PLS). JournalofChemometrics, 16(3): 119-128, https://doi.org/10.1002/cem.695.
Viant M R. 2007. Metabolomics of aquatic organisms: the new ‘omics’ on the block. Marine Ecology Progress Series, 332: 301-306, https://doi.org/10.3354/meps332301.
Wang M H, Chan L L, Si M Z, Hong H S, Wang D Z. 2010. Proteomic analysis of hepatic tissue of zebrafish (Danio rerio) experimentally exposed to chronic microcystin-LR. Toxicological Sciences, 113(1): 60-69, https://doi.org/10.1093/toxsci/kfp248.
Wiegand C, Pflugmacher S. 2005. Ecotoxicological effects of selected cyanobacterial secondary metabolites a short review. Toxicology and Applied Pharmacology, 203(3): 201-218, https://doi.org/10.1016/j.taap.2004.11.002.
Xiao C N, Dai H, Liu H B, Wang Y L, Tang H R. 2008. Revealing the metabonomic variation of rosemary extracts using 1H NMR spectroscopy and multivariate data analysis. Journal of Agricultural and Food Chemistry, 56(21): 10 142-10 153, https://doi.org/10.1021/jf8016833.
Yang Q Q, Qian Z X, Ye Z H, Zhou A N, Zhao X X, Zhang P J, Liu G F, Yu X P. 2021. Widespread mislabeling of nonnative apple snails (Ampullariidae: pomacea) as native field snails (Viviparidae: cipangopaludina) on the Chinese food markets. Aquaculture, 530: 735756, https://doi.org/10.1016/j.aquaculture.2020.735756.
Yang Z Y, Wu H J, Li Y. 2012. Toxic effect on tissues and differentially expressed genes in hepatopancreas identified by suppression subtractive hybridization of freshwater pearl mussel (Hyriopsis cumingii) following microcystin-LR challenge. Environmental Toxicology, 27(7): 393-403, https://doi.org/10.1002/tox.20652.
Yoon D, Choi H, Noh H, Ok Y J, Oh S, Ma S, Yoon C, Kim S. 2017. Toxicological assessment of microcystin-LR to zebrafish (Danio rerio) using metabolomics. Bulletin of the Korean Chemical Society, 38(4): 459-465, https://doi.org/10.1002/bkcs.11112.
Zhang J Q, Wang Z, Song Z Y, Xie Z C, Li L, Song L R. 2012. Bioaccumulation of microcystins in two freshwater gastropods from a cyanobacteria-bloom plateau lake, Lake Dianchi. Environmental Pollution, 164: 227-234, https://doi.org/10.1016/j.envpol.2012.01.021.
Zhang J Q, Xie Z C, Wang Z. 2016. Oxidative stress responses and toxin accumulation in the freshwater snail Radix swinhoei (Gastropoda, Pulmonata) exposed to microcystin-LR. Environmental Science and Pollution Research, 23(2): 1 353-1 361, https://doi.org/10.1007/s11356-015-5366-x.
Zhang L M, Ye Y F, An Y P, Tian Y, Wang Y L, Tang H R. 2011. Systems responses of rats to anatoxin B1 exposure revealed with metabonomic changes in multiple biological matrices. Journal of Proteome Research, 10(2): 614-623, https://doi.org/10.1021/pr100792q.
Zhou J, Zhu X S, Cai Z H. 2010. Tributyltin toxicity in abalone (Haliotis diversicolor supertexta) assessed by antioxidant enzyme activity, metabolic response, and histopathology. Journal of Hazardous Materials, 183(1-3): 428-433, https://doi.org/10.1016/j.jhazmat.2010.07.042.
Zhu J Y, Lu K H, Zhang C J, Liang J J, Hu Z Y. 2011. Biochemical and ultrastructural changes in the hepatopancreas of Bellamya aeruginosa (Gastropoda) fed with toxic Cyanobacteria. The Scientific World Journal, 11: 2 091-2 105, https://doi.org/10.1100/2011/402326.
Zou J, Chen L T, Shan K, Hu L L, Song L R, Gan N Q. 2018. Assessment of different mcy genes for detecting the toxic to non-toxic Microcystis ratio in the field by multiplex qPCR. Journal of Oceanology and Limnology, 36(4): 1 132-1 144, https://doi.org/10.1007/s00343-019-7186-1.
Copyright © Haiyang Xuebao