Cite this paper:
Fei GAO, Yue ZHANG, Peilin WU, Mengling CHEN, Linwen HE, Qiang XU, Aimin WANG. Bacterial community composition in gut content and ambient sediment of two tropical wild sea cucumbers (Holothuria atra and H. leucospilota)[J]. Journal of Oceanology and Limnology, 2022, 40(1): 360-372

Bacterial community composition in gut content and ambient sediment of two tropical wild sea cucumbers (Holothuria atra and H. leucospilota)

Fei GAO1,2, Yue ZHANG2, Peilin WU2, Mengling CHEN2, Linwen HE1,2, Qiang XU1,2, Aimin WANG1,2
1 State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, China;
2 Ocean College, Hainan University, Haikou 570228, China
Abstract:
Sea cucumbers play an important role in sediment bioturbation in coral reef and rocky intertidal ecosystems, and bacteria were a commonly-reported component of holothuroid diets. Bacterial community composition in the foregut and hindgut of two common tropical sea cucumbers (Holothuria atra and H. leucospilota) and the ambient surface sediment were investigated using high throughput sequencing based on 16S rRNA gene analysis. A total of 5 584 operational taxonomic units (OTUs) were obtained from 25 samples based on a 97% threshold, and more than half of the OTUs (n=3 694, 66.2%) were shared by the gut contents of two species of sea cucumbers and surrounding sediments. Bacterial richness and diversity in sediment samples were significantly higher than those in the gut content samples (P<0.05). Proteobacteria was the predominant phylum in most samples showing 45.69%±8.61%, 70.09%±4.03%, 45.88%±5.38%, and 55.19%±0.79% reads in the foregut of H. leucospilota, hindgut of H. leucospilota, hindgut of H. atra, and sediment libraries, respectively, but Bacteroidetes was the predominant phylum with the relative content of 34.98%±5.52% in the foregut of H. atra. Among the dominant genera, reads related to the genera Anderseniella, Ilumatobacter, and Ruegeria were detected in all the gut contents and sediment libraries. A comparison of gut bacteria community between the two species of sea cucumbers suggested that H. atra had stronger feeding preference than H. leucospilota, and the same types of microbes escaped digestion of the two sea cucumber species. Obvious different bacterial community composition in the foreguts of the two species of sea cucumbers and the surrounding sediments might result from the animal’s selective feeding for sediment patches. Bacterial community structure in hindgut contents of H. atra and H. leucospilota both differed clearly from adjacent sediments, which indicated feeding activity of deposit-feeding sea cucumbers could change the sedimental bacterial composition. In conclusion, from the perspective of bacteria, sea cucumber H. atra and H. leucospilota had different feeding preferences, yet they could both affect bacterial composition in sediments by feeding activity. The motivation for selective feeding and sea cucumber-sediment interaction might be explored in the future.
Key words:    sea cucumber|bacteria|gut|high-throughput sequencing|sediment   
Received: 2021-01-03   Revised:
Tools
PDF (1766 KB) Free
Print this page
Add to favorites
Email this article to others
Authors
Articles by Fei GAO
Articles by Yue ZHANG
Articles by Peilin WU
Articles by Mengling CHEN
Articles by Linwen HE
Articles by Qiang XU
Articles by Aimin WANG
References:
Amaro T, Witte H, Herndl G J, Cunha M R, Billett D S M. 2009. Deep-sea bacterial communities in sediments and guts of deposit-feeding holothurians in Portuguese canyons (NE Atlantic). Deep Sea Research Part I Océanographie Research Papers, 56(10): 1 834-1 843.
Amon R M W, Herndl G J. 1991. Deposit feeding and sediment: I. interrelationship between Holothuria tubulosa (Holothurioida, Ech’modermata) and the sediment microbial community. Marine Ecology, 12(2): 163-174.
Arahal D R, Lucena T, Rodrigo-Torres L, Pujalte M J. 2018. Ruegeria denitrificans sp. nov., a marine bacterium in the family rhodobacteraceae with the potential ability for cyanophycin synthesis. International Journal of Systematic and Evolutionary Microbiology, 68(8): 2 515-2 522.
Baek J, Kim J H, Sukhoom A, Kim W. 2020. Ruegeria sediminis sp. nov., isolated from tidal flat sediment. International Journal of Systematic and Evolutionary Microbiology, 70(5): 3 055-3 061, https://doi.org/10.1099/ijsem.0.004128.
Billett D S M, Llewellyn D, Watson J. 1988. Are deep-sea holothurians selective feeders? In: Burke R D, Mladenov P V, Lambert P, Parsley R L eds. Echinoderm Biology: Proceedings of the 6th International Echinoderm Conference. Balkema, Rotterdam. p.421-429.
Bonham K, Held E E. 1963. Ecological observations on the sea cucumbers Holothuria atra and H. leucospilota at Rongelap Atoll, Marshall Islands. Pacific Science, 17(3): 305-314.
Bordbar S, Anwar F, Saari N. 2011. High-value components and bioactives from sea cucumbers for functional foods-A Review. Marine Drugs, 9(10): 1 761-1 805.
Chi C, Liu J Y, Fei S Z, Zhang C, Chang Y Q, Liu X L, Wang G X. 2014. Effect of intestinal autochthonous probiotics isolated from the gut of sea cucumber (Apostichopus japonicus) on immune response and growth of A. japonicus. Fish & Shellfish Immunology, 38(2): 367-373.
Conand C. 2018. Tropical sea cucumber fisheries: changes during the last decade. Marine Pollution Bulletin, 133: 590-594.
Custodio M, Ordinola-Zapata A, Espinoza C, Vieyra-Peña E, Peñaloza R, Sánchez-Suárez H, Peralta-Ortiz T. 2020. Metagenomic data on the composition of bacterial communities in lake environment sediments for fish farming by next generation Illumina sequencing. Data in Brief, 32: 106228.
Darya M, Sajjadi M M, Yousefzadi M, Sourinejad I, Zarei M. 2020. Antifouling and antibacterial activities of bioactive extracts from different organs of the sea cucumber Holothuria leucospilota. Helgoland Marine Research, 74(1): 4.
Deming J W, Colwell R R. 1982. Barophilic bacteria associated with digestive tracts of Abyssal Holothurians. Applied and Environmental Microbiology, 44(5): 1 222-1 230.
Edgar R C, Haas B J, Clemente J C, Quince C, Knight R. 2011. UCHIME improves sensitivity and speed of chimera detection. Bioinformatics, 27(16): 2 194-2 200.
Edgar R C. 2013. UPARSE: highly accurate OTU sequences from microbial amplicon reads. Nature Methods, 10(10): 996-998.
Esmat A Y, Said M M, Soliman A A, El-Masry K S H, Badiea E A. 2013. Bioactive compounds, antioxidant potential, and hepatoprotective activity of sea cucumber (Holothuria atra) against thioacetamide intoxication in rats. Nutrition, 29(1): 258-267.
Fankboner P V. 1978. Suspension-feeding mechanisms of the armoured sea cucumber Psolus chitinoides Clark. Journal of Experimental Marine Biology and Ecology, 31(1): 11-25.
Foster G G, Hodgson A N. 1996. Feeding, tentacle and gut morphology in five species of southern African intertidal holothuroids (Echinodermata). South African Journal of Zoology, 31(2): 70-79.
Gao F, Li F H, Tan J, Yan J P, Sun H L. 2014a. Bacterial community composition in the gut content and ambient sediment of sea cucumber Apostichopus japonicus revealed by 16S rRNA gene pyrosequencing. PLoS One, 9(6): e100092.
Gao F, Tan J, Sun H L, Yan J P. 2014b. Bacterial diversity of gut content in sea cucumber (Apostichopus japonicus) and its habitat surface sediment. Journal of Ocean University of China, 13(2): 303-310.
Gao F, Xu Q, Yang H S. 2010. Seasonal variations of food sources in Apostichopus japonicus indicated by fatty acid biomarkers analysis. Journal of Fisheries of China, 34(5): 760-767. (in Chinese with English abstract)
Gao S, Pan L Q, Huang F, Song M S, Tian C C, Zhang M Y 2019. Metagenomic insights into the structure and function of intestinal microbiota of the farmed pacific white shrimp (litopenaeus vannamei). Aquaculture, 499: 109-118.
Gerlach S A. 1978. Food-chain relationships in subtidal silty sand marine sediments and the role of meiofauna in stimulating bacterial productivity. Oecologia, 33(1): 55-69.
Hammond L S. 1983. Nutrition of deposit-feeding holothuroids and echinoids (Echinodermata) from a shallow reef lagoon, Discovery Bay, Jamaica. Marine Ecology-Progress Series, 10: 297-305.
Han H, Yi Y H, Li L, Wang X H, Liu B S, Sun P, Pan M X. 2007. A new triterpene glycoside from sea cucumber Holothuria leucospilota. Chinese Chemical Letters, 18(2): 161-164.
Hatmanti A, Purwati P. 2011. Bacteria associated holothurians: the key of habitat preference, diet, and functions. Jurnal Ilmu Dan Teknologi Kelautan Tropis, 3(1): 73-81.
Hauksson E. 1979. Feeding biology of Stichopus tremulus, a deposit-feeding holothurian. Sarsia, 64(3): 155-160.
Hess M, Sczyrba A, Egan R, Kim T W, Chokhawala H, Schroth G, Luo S J, Clark D S, Chen F, Zhang T, Mackie R I, Pennacchio L A, Tringe S G, Visel A, Woyke T, Wang Z, Rubin E M. 2011. Metagenomic discovery of biomassdegrading genes and genomes from cow rumen. Science, 331(6016): 463-467.
Huang W, Huo D, Yu Z, Ren C, Jiang X, Luo P, Chen T, Hu C. 2018. Spawning, larval development and juvenile growth of the tropical sea cucumber Holothuria leucospilota. Aquaculture, 488: 22-29.
Ibrahim H A H. 2012. Antibacterial carotenoids of three Holothuria species in Hurghada, Egypt. The Egyptian Journal of Aquatic Research, 38(3): 185-194.
Jia X, Wang L, Zhao Y H, Zhang C Y, Li X D. 2020. Soil microbial communities in the rhizosphere of Robinia pseudoacacia L. after being exposed to elevated atmospheric CO2 and cadmium for 4 years. Applied Soil Ecology, 154: 103661.
Kim J, Kim D Y, Yang K H, Kim S, Lee S S. 2019. Ruegeria lutea sp. nov., isolated from marine sediment, Masan Bay, South Korea. International Journal of Systematic and Evolutionary Microbiology, 69(9): 2 854-2 861.
Kitisin T, Suphamungmee W, Meemon K. 2019. Saponin-rich extracts from Holothuria leucospilota mediate lifespan extension and stress resistance in Caenorhabditis elegans via daf-16. Journal of Food Biochemistry, 43(12): e13075.
Liu N N, Zhang S S, Zhang W W, Li C H. 2017. Vibrio sp. 33 a potential bacterial antagonist of Vibrio splendidus pathogenic to sea cucumber (Apostichopus japonicus). Aquaculture, 470: 68-73.
MacTavish T, Stenton-Dozey J, Vopel K, Savage C. 2012. Deposit-feeding sea cucumbers enhance mineralization and nutrient cycling in organically-enriched coastal sediments. PLoS One, 7(11): e50031.
Mangion P, Taddei D, Conand C, Frouin P. 2004. Feeding rate and impact of sediment reworking by two deposit feeders Holothuria leucospilota and Holothuria atra on a fringing reef (Reunion Island, Indian Ocean). In: Echinoderms: Munchen: Proceedings of the 11th International Echinoderm Conference. London: CRC Press.
Martin M. 2011. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet Journal, 17(1): 10-12.
McLellan S L, Huse S M, Mueller-Spitz S R, Andreishcheva E N, Sogin M L. 2010. Diversity and population structure of sewage-derived microorganisms in wastewater treatment plant influent. Environmental Microbiology, 12(2): 378-392.
Mfilinge P L, Tsuchiya M. 2016. Changes in sediment fatty acid composition during passage through the gut of deposit feeding holothurians: Holothuria atra (Jaeger, 1883) and Holothuria leucospilota (Brandt, 1835). Journal of Lipids, 2016: 4579794.
Michio K, Kengo K, Yasunori K, Hitoshi M, Takayuki Y, Hideaki Y, Hiroshi S. 2003. Effects of deposit feeder Stichopus japonicus on algal bloom and organic matter contents of bottom sediments of the enclosed sea. Marine Pollution Bulletin, 47(1-6): 118-125.
Moriarty D J W. 1982. Feeding of Holothuria atra and Stichopus chloronotus on bacteria, organic carbon and organic nitrogen in sediments of the Great Barrier Reef. Australian Journal of Marine and Freshwater Research, 33(2): 255-263.
Mußmann M, Pjevac P, Krüger K, Dyksma S. 2017. Genomic repertoire of the Woeseiaceae/JTB255, cosmopolitan and abundant core members of microbial communities in marine sediments. The ISME Journal, 11(5): 1 276-1 281.
Paliaga P, Korlević M, Ivančić I, Najdek M. 2017. Limited influence of primary treated sewage waters on bacterial abundance, production and community composition in coastal seawaters. Marine Environmental Research, 131: 215-226.
Paltzat D L, Pearce C M, Barnes P A, McKinley R S. 2008. Growth and production of California sea cucumbers (Parastichopus californicus Stimpson) co-cultured with suspended Pacific oysters (Crassostrea gigas Thunberg). Aquaculture, 275(1-4): 124-137.
Pandiyan P, Balaraman D, Thirunavukkarasu R, George E G J, Subaramaniyan K, Manikkam S, Sadayappan B. 2013. Probiotics in aquaculture. Drug Invention Today, 5(1): 55-59.
Phillips N W. 1984. Role of different microbes and substrates as potential suppliers of specific, essential nutrients to marine detritivores. Bulletin of Marine Science, 35(3): 283-298.
Purcell S W, Samyn Y, Conand C. 2012. Commercially important Sea Cucumbers of the World. FAO Species Catalogue for Fishery Purposes. No. 6. FAO, Rome.
Purcell S W. 2010. Managing Sea Cucumber Fisheries with An Ecosystem Approach. FAO Fisheries and Aquaculture Technical Paper No. 520, FAO, Rome.
Purcell S, Conand C, Uthicke S, Byrne M. 2016. Ecological roles of exploited sea cucumbers. Oceanography and Marine Biology, 54: 367-386.
Rahiman K M M, Jesmi Y, Thomas A P, Hatha A A M. 2010. Probiotic effect of Bacillus NL110 and Vibrio NE17 on the survival, growth performance and immune response of Macrobrachium rosenbergii (de Man). Aquaculture Research, 41(9): e120-e134.
Roberts D. 1979. Deposit-feeding mechanisms and resource partitioning in tropical holothurians. Journal of Experimental Marine Biology and Ecology, 37(1): 43-56.
Schneider K, Silverman J, Kravitz B, Rivlin T, Schneider-Mor A, Barbosa S, Byrne M, Caldeira K. 2013. Inorganic carbon turnover caused by digestion of carbonate sands and metabolic activity of holothurians. Estuarine, Coastal and Shelf Science, 133: 217-223.
Silva-Aciares F R, Carvajal P O, Mejías C A, Riquelme C E. 2011. Use of macroalgae supplemented with probiotics in the Haliotis rufescens (Swainson, 1822) culture in Northern Chile. Aquaculture Research, 42(7): 953-961.
Sloan N A, von Bodungen B. 1980. Distribution and feeding of the sea cucumber Isostichopus badionotus in relation to shelter and sediment criteria of the Bermuda Platform. Marine Ecology-Progress Series, 2: 257-264.
Smith T B. 1983. Tentacular ultrastructure and feeding behaviour of Neopentadactyla mixta (Holothuroidea: dendrochirota). Journal of the Marine Biological Association of the United Kingdom, 63(2): 301-311.
Sun Y, Chen D. 1989. The microbial composition of Stichopus japonicus and its physiological property. Oceanologia et Limnologia Sinica, 20(4): 300-307. (in Chinese with English abstract)
Uchino Y, Hirata A, Yokota A, Sugiyama J. 1998. Reclassification of marine agrobacterium species: proposals of Stappia stellulata gen. nov., comb. nov., Stappia aggregata sp. nov., nom. rev., Ruegeria atlantica gen. nov., comb. nov., Ruegeria gelatinovora comb. nov., Ruegeria algicola comb. nov., and Ahrensia kieliense gen. nov., sp. nov., nom. rev. The Journal of General and Applied Microbiology, 44(3): 201-210.
Uthicke S. 1999. Sediment bioturbation and impact of feeding activity of Holothuria (Halodeima) atra and Stichopus chloronotus, two sediment feeding holothurians, at Lizard Island, Great Barrier Reef. Bulletin of Marine Science, 64(1): 129-141.
Vidal-Ramirez F, Dove S. 2016. Diurnal effects of Holothuria atra on seawater carbonate chemistry in a sedimentary environment. Journal of Experimental Marine Biology and Ecology, 474: 156-163.
Viyakarn V, Chavanich S, Heery E, Raksasab C. 2020. Distribution of sea cucumbers, Holothuria atra, on reefs in the upper Gulf of Thailand and the effect of their population densities on sediment microalgal productivity. Estuarine, Coastal and ShelfScience, 235: 106514.
Wang L, Zhao X W, Xu H C, Bao X Y, Liu X J, Chang Y Q, Ding J. 2018. Characterization of the bacterial community in different parts of the gut of sea cucumber (Apostichopus japonicus) and its variation during gut regeneration. Aquaculture Research, 49(5): 1 987-1 996.
Wang Y, Liu Y T, Wang J N, Luo T W, Zhang R, Sun J, Zheng Q, Jiao N Z. 2019. Seasonal dynamics of bacterial communities in the surface seawater around subtropical Xiamen island, china, as determined by 16S rRNA gene profiling. Marine Pollution Bulletin, 142: 135-144.
Ward-Rainey N, Rainey F A, Stackebrandt E. 1996. A study of the bacterial flora associated with Holothuria atra. Journal of Experimental Marine Biology and Ecology, 203(1): 11-26.
Copyright © Haiyang Xuebao