Cite this paper:
Xueliang NAN, Hao WEI, Haiyan ZHANG, Hongtao NIE. Spatial difference in net growth rate of Yesso scallop Patinopecten yessoensis revealed by an aquaculture ecosystem model[J]. Journal of Oceanology and Limnology, 2022, 40(1): 373-387

Spatial difference in net growth rate of Yesso scallop Patinopecten yessoensis revealed by an aquaculture ecosystem model

Xueliang NAN, Hao WEI, Haiyan ZHANG, Hongtao NIE
School of Marine Science and Technology, Tianjin University, Tianjin 300072, China
Abstract:
Identifying the main factors on spatial differences in net growth rate of Yesso scallop (Patinopecten yessoensis) in culture system is the key to effective aquaculture management and development. Coupling a 3D ecosystem model (ROMS-CoSiNE) with a dynamic energy budget model for scallops, a Yesso scallop culture ecosystem (YeSCE) model was established with which scallop growth was simulated with real seeding density and juvenile size from local aquaculture experiments from December 1, 2012 to November 30, 2013. Results show that the YeSCE model has reasonably simulated the environmental variation and scallop net growth rate in the Changhai sea area. The growth of scallops was slow in winter and midsummer and was limited mainly by temperature. Food availability was a key factor that contributed to the fast growth of the scallops during spring to early summer and in autumn. Generally, the scallops cultured in the north part of the Changhai sea area grew faster than those in the south; and the net growth rate for scallops cultured near the island was significantly higher compare to the others, which is probably correlated to the spatial distribution of food availability. Based on the correlation analysis, the spatial differences of the net growth rate were largely affected by the length of the match timing of temperatures and food availability. The results of this study provide a scientific support for optimizing bottom culture planning and adjusting bottom culture methods.
Key words:    3D ecosystem model|shellfish aquaculture|Yesso scallop|Patinopecten yessoensis|net growth rate|Changhai sea area   
Received: 2020-10-30   Revised:
Tools
PDF (4498 KB) Free
Print this page
Add to favorites
Email this article to others
Authors
Articles by Xueliang NAN
Articles by Hao WEI
Articles by Haiyan ZHANG
Articles by Hongtao NIE
References:
Aya F A, Kudo I. 2010. Isotopic shifts with size, culture habitat, and enrichment between the diet and tissues of the Japanese scallop Mizuhopecten yessoensis (Jay, 1857). Marine Biology, 157(10): 2 157-2 167, https://doi.org/10.1007/s00227-010-1480-y.
Bourlès Y, Alunno-Bruscia M, Pouvreau S, Tollu G, Leguay L, Arnaud C, Goulletquer P, Kooijman S A L M. 2009. Modelling growth and reproduction of the Pacific oyster Crassostrea gigas: advances in the oyster-DEB model through application to a coastal pond. Journal of Sea Research, 62(2-3): 62-71, https://doi.org/10.1016/j.seares.2009.03.002.
Boyer T, Locarnini R A, Zweng M M, Mishonov A V, Reagan J R, Antonov J I, Garcia H E, Baranova O K, Johnson D R, Seidov D, Biddle M M, Hamilton M. 2015. Changes to calculations of the World Ocean Atlas 2013 for version 2. http://data.nodc.noaa.gov/woa/WOA13/DOC/woa13v2_changes.pdf. Accessed on 2020-02-23.
Chen C T A. 2009. Chemical and physical fronts in the Bohai, Yellow and East China seas. Journal of Marine Systems, 78(3): 394-410, https://doi.org/10.1016/j.jmarsys.2008.11.016.
Chen J Y. 2019. Seize opportunities to accelerate the green development of aquaculture. China Fishery Quality and Standards, 9(4): 1-4. (in Chinese with English abstract)
Cloern J E, Grenz C, Vidergar-Lucas L. 1995. An empirical model of the phytoplankton chlorophyll: carbon ratio-the conversion factor between productivity and growth rate. Limnology and Oceanography, 40(7): 1 313-1 321, https://doi.org/10.4319/lo.1995.40.7.1313.
Cummings J A. 2005. Operational multivariate ocean data assimilation. Quarterly Journal of the Royal Meteorological Society, 131(613): 3 583-3 604, https://doi.org/10.1256/qj.05.105.
Dee D P, Uppala S M, Simmons A J, Berrisford P, Poli P, Kobayashi S, Andrae U, Balmaseda M A, Balsamo G, Bauer B, Bechtold P, Beljaars A C M, van de Berg L, Bidlot J, Bormann N, Delsol C, Dragani R, Fuentes M, Geer A J, Haimberger L, Healy S B, Hersbach H, Hólm E V, Isaksen L, Kållberg P, Köhler M, Matricardi M, McNally A P, Monge-Sanz B M, Morcrette J J, Park B K, Peubey C, de Rosnay P, Tavolato C, Thépaut J N, Vitart F. 2011. The ERA-Interim reanalysis: configuration and performance of the data assimilation system. Quarterly Journal of the Royal Meteorological Society, 137(656): 553-597, https://doi.org/10.1002/qj.828.
FAO. 2020. The state of world fisheries and aquaculture 2020. http://www.fao.org/state-of-fisheries-aquaculture/en/.
Filgueira R, Guyondet T, Comeau L A, Grant J. 2014. A fully-spatial ecosystem-DEB model of oyster (Crassostrea virginica) carrying capacity in the Richibucto Estuary, Eastern Canada. Journal of Marine Systems, 136: 42-54, https://doi.org/10.1016/jjmarsys.2014.03.015.
Fishery Administration Bureau of Ministry of Agriculture and Rural Areas, National Aquatic Technology Promotion Center, China Fisheries Society. 2019. China Fishery Statistical Yearbook of 2019. China Agriculture Press, Beijing, China. p.1-172. (in Chinese)
Guan B X. 1963. A preliminary study of the temperature variations and the characteristics of the circulation of the Cold Water Mass of the Yellow Sea. Oceanologia et Limnologia Sinica, 5(4): 255-284. (in Chinese)
Guyondet T, Roy S, Koutitonsky V G, Grant J, Tita G. 2010. Integrating multiple spatial scales in the carrying capacity assessment of a coastal ecosystem for bivalve aquaculture. Journal of Sea Research, 64(3): 341-359, https://doi.org/10.1016/j.seares.2010.05.003.
Helm M. 2005. Cultured aquatic species information programme. Patinopecten yessoensis (Jay, 1857). http://www.fao.org/fishery/culturedspecies/Patinopecten_yessoensis/en. Accessed on 2020-02-23.
Jiang W W, Lin F, Du M R, Fang J G, Fang J H, Gao Y P, Wang X Q, Li F X, Dong S P, Hou X, Jiang Z J. 2020. Simulation of Yesso scallop, Patinopecten yessoensis, growth with a dynamic energy budget (DEB) model in the mariculture area of Zhangzidao Island. Aquaculture International, 28(1): 59-71, https://doi.org/10.1007/s10499-019-00447-6.
Jiang W W, Lin F, Fang J G, Gao Y P, Du M R, Fang J H, Li W H, Jiang Z J. 2018. Transcriptome analysis of the Yesso scallop, Patinopecten yessoensis gills in response to water temperature fluctuations. Fish & Shellfish Immunology, 80: 133-140, https://doi.org/10.1016/j.fsi.2018.05.038.
Jiang X. 2013. Study on the Growth, Food Source, Oxygen Consumption and Ammonia Excretion of Scallop Patinopecten Yessoensis Jay. Nanjing Agricultural University, Nanjing, China. (in Chinese)
Kooijman S A L M. 2010. Dynamic Energy Budget Theory for Metabolic Organisation. Cambridge University Press, Cambridge. p.1-514.
Laurel B J, Hurst T P, Ciannelli L. 2011. An experimental examination of temperature interactions in the match-mismatch hypothesis for Pacific cod larvae. Canadian Journal of Fisheries and Aquatic Sciences, 68(1): 51-61, https://doi.org/10.1139/F10-130.
Lavaud R, La Peyre M K, Casas S M, Bacher C, La Peyre J F. 2017. Integrating the effects of salinity on the physiology of the eastern oyster, Crassostrea virginica, in the northern Gulf of Mexico through a Dynamic Energy Budget model. Ecological Modelling, 363: 221-233, https://doi.org/10.1016/j.ecolmodel.2017.09.003.
Li H B, Liang Y B, Yuan X T. 2012. The effect of raft-culture on distribution of Synchococcus in Changhai waters, Liaoning. Acta Oceanologica Sinica, 34(5): 221-225. (in Chinese with English abstract)
Liu S M, Hong G H, Zhang J, Ye X W, Jiang X L. 2009. Nutrient budgets for large Chinese estuaries. Biogeosciences, 6(10): 2 245-2 263, https://doi.org/10.5194/bg-6-2245-2009.
Liu Y, Saitoh S I, Radiarta I N, Igarashi H, Hirawake T. 2014. Spatiotemporal variations in suitable areas for Japanese scallop aquaculture in the Dalian coastal area from 2003 to 2012. Aquaculture, 422-423: 172-183, https://doi.org/10.1016/j.aquaculture.2013.11.033.
Luo C Y, Nie H T, Zhang H Y. 2019. Spatial variability of parameter sensitivity in the ecosystem simulation of the Bohai Sea and Yellow Sea. Haiyang Xuebao, 41(8): 85-96. (in Chinese with English abstract)
Nan X L, Wei H, Fan R F, Yang W. 2020. Rapid changes in the near-bottom temperature of the bottom aquaculture area around the Zhangzi Island in summer. Acta Oceanologica Sinica, 39(5): 46-54, https://doi.org/10.1007/s13131-020-1605-1.
Person R, Aumont O, Madec G, Vancoppenolle M, Bopp L, Merino N. 2019. Sensitivity of ocean biogeochemistry to the iron supply from the Antarctic Ice Sheet explored with a biogeochemical model. Biogeosciences, 16(18): 3 583-3 603, https://doi.org/10.5194/bg-16-3583-2019.
Pouvreau S, Bourles Y, Lefebvre S, Gangnery A, Alunno-Bruscia M. 2006. Application of a dynamic energy budget model to the Pacific oyster, Crassostrea gigas, reared under various environmental conditions. Journal of Sea Research, 56(2): 156-167, https://doi.org/10.1016/j.seares.2006.03.007.
Redfield A C, Ketchum B H, Richards F A. 1963. The influence of organisms on the composition of seawater. In: Hill M N ed. The Composition of Seawater: Comparative and Descriptive Oceanography. The Sea: Ideas and Observations on Progress in the Study of the Seas, 2. Interscience Publishers, New York. p.26-77.
Rico-Villa B, Pouvreau S, Robert R. 2009. Influence of food density and temperature on ingestion, growth and settlement of Pacific oyster larvae, Crassostrea gigas. Aquaculture, 287(3-4): 395-401, https://doi.org/10.1016/j.aquaculture.2008.10.054.
Scharf I, Braf H, Ifrach N, Rosenstein S, Subach A. 2015. The effects of temperature and diet during development, adulthood, and mating on reproduction in the red flour beetle. PLoS One, 10(9): e0136924, https://doi.org/10.1371/journal.pone.0136924.
Shchepetkin A F, McWilliams J C. 2005. The regional oceanic modeling system (ROMS): a split-explicit, free-surface, topography-following-coordinate oceanic model. Ocean Modelling, 9(4): 347-404, https://doi.org/10.1016/j.ocemod.2004.08.002.
Stavrakidis-Zachou O, Papandroulakis N, Lika K. 2019. A DEB model for European sea bass (Dicentrarchus labrax): parameterisation and application in aquaculture. Journal of Sea Research, 143: 262-271, https://doi.org/10.1016/j.seares.2018.05.008.
Taylor K E. 2001. Summarizing multiple aspects of model performance in a single diagram. Journal of Geophysical Research: Atmospheres, 106(D7): 7 183-7 192, https://doi.org/10.1029/2000JD900719.
Tong Y D, Zhao Y, Zhen G C, Chi J, Liu X H, Lu Y R, Wang X J, Yao R H, Chen J Y, Zhang W. 2015. Nutrient loads flowing into coastal waters from the main rivers of China (2006-2012). Scientific Reports, 5(1): 16678, https://doi.org/10.1038/srep16678.
Troost TA, Wijsman J W M, Saraiva S, Freitas V 2010. Modelling shellfish growth with dynamic energy budget models: an application for cockles and mussels in the Oosterschelde (southwest Netherlands). Philosophical Transactions of the Royal Society B: Biological Sciences, 365(1557): 3 567-3 577, https://doi.org/10.1098/rstb.2010.0074.
van der Meer J, Kooijman S A L M. 2014. Inference on energetics of deep-sea fish that cannot be aged: the case of the hagfish. Journal of Sea Research, 94: 138-143, https://doi.org/10.1016/j.seares.2014.07.007.
van der Meer J. 2006. An introduction to Dynamic Energy Budget (DEB) models with special emphasis on parameter estimation. Journal of Sea Research, 56(2): 85-102, https://doi.org/10.1016/j.seares.2006.03.001.
van der Veer H W, Cardoso J F M F, van der Meer J. 2006. The estimation of DEB parameters for various Northeast Atlantic bivalve species. Journal of Sea Research, 56: 107-124, https://doi.org/10.1016/j.seares.2006.03.005.
Wang J N, Yan W J, Chen N W, Li X Y, Liu L S. 2015. Modeled long-term changes of DIN: DIP ratio in the Changjiang River in relation to Chl-a and DO concentrations in adjacent estuary. Estuarine, Coastal and Shelf Science, 166: 153-160, https://doi.org/10.1016/j.ecss.2014.11.028.
Xiu P, Chai F. 2014. Connections between physical, optical and biogeochemical processes in the Pacific Ocean. Progress in Oceanography, 122: 30-53, https://doi.org/10.1016/j.pocean.2013.11.008.
Yuan X T, Zhang M J, Liang Y B, Liu D, Guan D M. 2010. Self-pollutant loading from a suspension aquaculture system of Japanese scallop (Patinopecten yessoensis) in the Changhai sea area, Northern Yellow Sea of China. Aquaculture, 304(1-4): 79-87, https://doi.org/10.1016/j.aquaculture.2010.03.026.
Zhang J H, Wu W G, Liu Y, Lin F, Wang W, Niu Y L. 2017. A dynamic energy budget (DEB) growth model for Japanese scallop Patinopecten yessoensis cultured in China. Journal of Fishery Sciences of China, 24(3): 497-506. (in Chinese with English abstract).
Zhang J H, Wu W G, Xu D, Ren L H, Niu Y L, Zhao X W. 2016. The estimation of Dynamic Energy Budget (DEB) model parameters for scallop Patinopecten yessoensis. Journal of Fisheries of China, 40(5): 703-710. (in Chinese with English abstract)
Zhang J. 1996. Nutrient elements in large Chinese estuaries. Continental Shelf Research, 16(8): 1 023-1 045, https://doi.org/10.1016/0278-4343(95)00055-0.
Zhao Y X, Zhang J H, Lin F, Ren J S, Sun K, Liu Y, Wu W G, Wang W. 2019. An ecosystem model for estimating shellfish production carrying capacity in bottom culture systems. Ecological Modelling, 393: 1-11, https://doi.org/10.1016/j.ecolmodel.2018.12.005.
Zhou F, Chai F, Huang D J, Xue H J, Chen J F, Xiu P, Xuan J L, Li J, Zeng D Y, Ni X B, Wang K. 2017. Investigation of hypoxia off the Changjiang Estuary using a coupled model of ROMS-CoSiNE. Progress in Oceanography, 159: 237-254, https://doi.org/10.1016/j.pocean.2017.10.008.
Copyright © Haiyang Xuebao