Cite this paper:
Fanfan TIAN, Kun WANG, Guozhi XIE, Weidong SUN. The formation of explosive volcanos at the circum-Pacific convergent margin during the last century[J]. Journal of Oceanology and Limnology, 2023, 41(1): 75-83

The formation of explosive volcanos at the circum-Pacific convergent margin during the last century

Fanfan TIAN1,2,3, Kun WANG1,2,3, Guozhi XIE1,2,3, Weidong SUN1,2,3
1 Center of Deep Sea Research, Center of Ocean Mega Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China;
2 Deep-Sea Multidisciplinary Research Center, Laoshan Laboratory, Qingdao 266237, China;
3 University of Chinese Academy of Sciences, Beijing 100049, China
Abstract:
The circum-Pacific convergent margin is known as “the Ring of Fire”, with abundant volcano eruptions. Large eruptions are rare but very disastrous. It remains obscure how are large explosive volcanos formed and where are the danger zones. Three largest eruptions since 1900, the Hunga Tonga-Hunga Ha’apai, the Mt. Pinatubo, and the Novarupta were found to be associated with subductions of volatile-rich sediments and located close to slab windows. Among them, the Hunga Tonga-Hunga Ha’apai is close to subducting seamount chains; the Mt. Pinatubo is right next to subducting fossil ridges. Both seamount chains and fossil ridges have water depths much shallower than the carbonate compensation depths (CCD) in the Pacific Ocean. Seismic image shows that a seamount is subducting towards the Novarupta volcano. Subduction of volatile-rich sediments and a slab window nearby are the two most important favorable conditions for catastrophic eruptions. Slab windows expose the mantle wedge to the hot asthenosphere, which increases the temperature and dramatically promotes the partial melting of the carbonate-fluxed domains, forming volatile-rich magmas that powered explosive eruptions.
Key words:    large explosive volcanos|subducting seamount chains|volatile-rich sediments|slab windows|Tonga   
Received: 2022-07-11   Revised:
Tools
PDF (7494 KB) Free
Print this page
Add to favorites
Email this article to others
Authors
Articles by Fanfan TIAN
Articles by Kun WANG
Articles by Guozhi XIE
Articles by Weidong SUN
References:
Adam V, Mike C, Joshua S et al. 2022. Hunga Tonga-Hunga Ha‘apai Erupts. NASA earth observatory, 19 January 2022, https://earthobservatory.nasa.gov/images/149347/hungatonga-hunga-haapai-erupts. Accessed on 2022-1-25.
Allison C M, Roggensack K, Clarke A B. 2021. Highly explosive basaltic eruptions driven by CO2 exsolution. Nature Communications, 12(1): 217, https://doi.org/10.1038/s41467-020-20354-2.
Amante C, Eakins B W. 2009. ETOPO1 1 Arc-Minute Global Relief Model: procedures, data sources and analysis. NOAA Technical Memorandum, NESDIS NGDC-24, https://doi.org/10.7289/V5C8276M.
Bândă N, Krol M, van Noije T et al. 2015. The effect of stratospheric sulfur from Mount Pinatubo on tropospheric oxidizing capacity and methane. Journal of Geophysical Research: Atmospheres, 120(3): 1202-1220, https://doi.org/10.1002/2014JD022137.
Benz H M, Herman M, Tarr A C et al. 2011. Seismicity of the Earth 1900-2010 Eastern Margin of the Australia Plate. U.S. Geological Survey, Reston, VA, https://doi.org/10.3133/ofr20101083I.
Briais A, Patriat P, Tapponnier P. 1993. Updated interpretation of magnetic anomalies and seafloor spreading stages in the South China Sea: implications for the Tertiary tectonics of Southeast Asia. Journal of Geophysical Research: Solid Earth, 98(B4): 6299-6328, https://doi.org/10.1029/92jb02280.
Buchs D M, Williams R, Sano S I et al. 2018. Non-Hawaiian lithostratigraphy of Louisville seamounts and the formation of high-latitude oceanic islands and guyots. Journal of Volcanology and Geothermal Research, 356:1-23, https://doi.org/10.1016/j.jvolgeores.2017.12.019.
Burke K D, Williams J W, Chandler M A et al. 2018. Pliocene and Eocene provide best analogs for near-future climates. Proceedings of the National Academy of Sciences of the United States of America, 115(52): 13288-13293, https://doi.org/10.1073/pnas.1809600115.
Caricchi L, Townsend M, Rivalta E et al. 2021. The build-up and triggers of volcanic eruptions. Nature Reviews Earth & Environment, 2(7): 458-476, https://doi.org/10.1038/s43017-021-00174-8.
Chen W P, Brudzinski M R. 2001. Evidence for a largescale remnant of subducted lithosphere beneath Fiji.Science, 292(5526): 2475-2479, https://doi.org/10.1126/ science.292.5526.2475.
Cronin S J, Brenna M, Smith I E M et al. 2017. New volcanic island unveils explosive past. Eos, Transactions American Geophysical Union, 26 June 2017. https://eos.org/ science-updates/new-volcanic-island-unveils-xplosivepast. Accessed on 2022-1-25.
Cronin S. 2022. Why the volcanic eruption in Tonga was so violent, and what to expect next. The Conversation, 15 January 2022, https://theconversation.com/why-thevolcanic-eruption-in-tonga-was-so-violent-and-what toexpect-next-175035. Accessed on 2022-1-25.
Dasgupta R. 2013. Ingassing, storage, and outgassing of terrestrial carbon through geologic time. Reviews in Mineralogy and Geochemistry, 75(1): 183-229.
Engdahl E R, van der Hilst R, Buland R. 1998. Global teleseismic earthquake relocation with improved travel times and procedures for depth determination. Bulletin of the Seismological Society of America, 88(3): 722-743, https://doi.org/10.1785/bssa0880030722.
Fierstein J, Hildreth W. 1992. The plinian eruptions of 1912 at Novarupta, Katmai National Park, Alaska. Bulletin of Volcanology, 54(8): 646-684, https://doi.org/10.1007/BF00430778.
Frederik M C G, Gulick S P S, Miller J J. 2020. Effect on subduction of deeply buried seamounts offshore of Kodiak Island. Tectonics, 39(7): 2019TC005710, https://doi.org/10.1029/2019TC005710.
Gerlach T. 2011. Volcanic versus anthropogenic carbon dioxide. Eos, Transactions American Geophysical Union, 92(24): 201-202, https://doi.org/10.1029/2011EO240001.
Gou T, Zhao D P, Huang Z C et al. 2019. Aseismic deep slab and mantle flow beneath Alaska: insight from anisotropic tomography. Journal of Geophysical Research: Solid Earth, 124(2): 1700-1724, https://doi.org/10.1029/2018JB016639.
Koppers A A P, Duncan R A, Steinberger B. 2004. Implications of a nonlinear 40Ar/39Ar age progression along the Louisville seamount trail for models of fixed and moving hot spots. Geochemistry, Geophysics, Geosystems, 5(6):Q06L02, https://doi.org/10.1029/2003GC000671.
Koppers A A P, Staudigel H, Minnett R. 2010. Box 4: Seamount catalog—seamount morphology, maps, and data files. Oceanography, 23(1): 37, https://doi.org/10.5670/oceanog.2010.88.
Koppers A P, Yamazaki T, Geldmacher J et al. 2011. Louisville Seamount Trail: Implications for Geodynamic Mantle Flow Models and the Geochemical Evolution of Primary Hotspots. Integrated Ocean Drilling Program Management International, Inc., https://doi.org/10.2204/iodp.pr.330.2011.
Newhall C G, Daag A S, Delfin F G et al. 1996. Eruptive history of Mount Pinatubo. In: Newhall C G eds. Fire and Mud: Eruptions and Lahars of Mt. Pinatubo, Philippines. University of Washington Press, Seattle and London. p. 165-195 .
Oman L, Robock A, Stenchikov G et al. 2005. Climatic response to high-latitude volcanic eruptions. Journal of Geophysical Research: Atmospheres, 110(D13): D13103.
Plank T, Langmuir C H. 1998. The chemical composition of subducting sediment and its consequences for the crust and mantle. Chemical Geology, 145(3-4): 325-394.
Plank T, Manning C E. 2019. Subducting carbon. Nature, 574(7778): 343-352, https://doi.org/10.1038/s41586-019-1643-z.
Plank T. 2014. The chemical composition of subducting sediments. In: Holland H D, Turekian K K eds. Treatise on Geochemistry. 2nd edn. Elsevier, Oxford. p.607-629, https://doi.org/10.1016/b978-0-08-095975-7.00319-3.
Poli P, Shapiro N M. 2022. Rapid characterization of large volcanic eruptions: measuring the impulse of the Hunga Tonga Ha’apai explosion from Teleseismic waves. Geophysical Research Letters, 49(8): 2022GL098123, https://doi.org/10.1029/2022gl098123.
Popa R G, Bachmann O, Huber C. 2021. Explosive or effusive style of volcanic eruption determined by magma storage conditions. Nature Geoscience, 14(10): 781-786, https://doi.org/10.1038/s41561-021-00827-9.
Robock A. 2000. Volcanic eruptions and climate. Reviews of Geophysics, 38(2): 191-219.
Ruellan E, Delteil J, Wright I et al. 2003. From rifting to active spreading in the Lau Basin-Havre Trough backarc system(SW Pacific): locking/unlocking induced by seamount chain subduction. Geochemistry, Geophysics, Geosystems, 4(5): 8909, https://doi.org/10.1029/2001GC000261 .
Self S, Zhao J X, Holasek R E et al. 1996. The atmospheric impact of the 1991 Mount Pinatubo eruption. In: Newhall C G eds. Fire and Mud: Eruptions and Lahars of Mt. Pinatubo, Philippines. University of Washington Press, Seattle and London. p.1126.
Seton M, Müller R D, Zahirovic S et al. 2012. Global continental and ocean basin reconstructions since 200Ma. Earth-Science Reviews, 113(3-4): 212-270, https://doi.org/10.1016/j.earscirev.2012.03.002.
Sheldrake T, Caricchi L. 2017. Regional variability in the frequency and magnitude of large explosive volcanic eruptions. Geology, 45(2): 111-114, https://doi.org/10.1130/g38372.1.
Sun S S, McDonough W F. 1989. Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. Geological Society, London, Special Publications, 42(1): 313-345, https://doi.org/10.1144/gsl.Sp.1989.042.01.19.
Sun W D, Zhang L P, Liu X. 2022. The rotation of the Pacific Plate induced by the Ontong Java large igneous province. Journal of Earth Science, 33(3): 544-551, https://doi.org/10.1007/s12583-021-1582-0.
Taylor B. 2006. The single largest oceanic plateau: Ontong Java-Manihiki-Hikurangi. Earth and Planetary Science Letters, 241(3-4): 372-380, https://doi.org/10.1016/j.epsl.2005.11.049.
Tejada M L G, Mahoney J J, Neal C R et al. 2002. Basement geochemistry and geochronology of Central Malaita, Solomon Islands, with implications for the origin and evolution of the Ontong Java Plateau. Journal of Petrology, 43(3): 449-484, https://doi.org/10.1093/petrology/43.3.449.
The Shipboard Scientific Party. 1973a. Site 178. DSDP Initial Reports Part I: Shipboard Site Reports, DSDP Volume XVIII: 287-376, https://doi.org/10.2973/dsdp.proc.18.109.1973.
The Shipboard Scientific Party. 1973b. Site 179. DSDP Initial Reports Part I: Shipboard Site Reports, DSDP Volume XVIII: 377-405, https://doi.org/10.2973/dsdp.proc.18.110.1973.
The Shipboard Scientific Party. 1973c. Site 180. DSDP Initial Reports Part I: Shipboard Site Reports, DSDP Volume XVIII: 407-447, https://doi.org/10.2973/dsdp.proc.18.111.1973.
The Shipboard Scientific Party. 1973d. Site 183. DSDP Initial Reports Part I: Shipboard Site Reports, DSDP Volume XVIX: 19-91, https://doi.org/10.2973/dsdp.proc.19.102.1973.
The Shipboard Scientific Party. 1988. Leg 113. ODP Initial Reports Part I: Shipboard Site Reports, ODP Volume 113: 1-774, https://doi.org/10.2973/odp.proc.ir.113.1988.
Tozer B, Sandwell D T, Smith W H F et al. 2019. Global bathymetry and topography at 15 arc sec: SRTM15+.Earth and Space Science, 6(10): 1847-1864, https://doi.org/10.1029/2019EA000658.
Van Andel T H. 1975. Mesozoic/cenozoic calcite compensation depth and the global distribution of calcareous sediments.Earth and Planetary Science Letters, 26(2): 187-194, https://doi.org/10.1016/0012-821X(75)90086-2.
Venzke E. 2013. Volcanoes of the World, v. 4.12.1. Global Volcanism Program, 2 Sep 2022, https://doi.org/10.5479/si.GVP.VOTW4-2013. Accessed on 2022-9-2.
Weber G, Caricchi L, Arce J L et al. 2020. Determining the current size and state of subvolcanic magma reservoirs.Nature Communications, 11(1): 5477, https://doi.org/10.1038/s41467-020-19084-2.
Worthington T J, Hekinian R, Stoffers P et al. 2006. Osbourn Trough: Structure, geochemistry and implications of a mid-Cretaceous paleospreading ridge in the South Pacific.Earth and Planetary Science Letters, 245(3-4): 685-701, https://doi.org/10.1016/j.epsl.2006.03.018.
Yang T F, Lee T, Chen C H et al. 1996. A double island arc between Taiwan and Luzon: consequence of ridge subduction. Tectonophysics, 258(1-4): 85-101, https://doi.org/10.1016/0040-1951(95)00180-8.
Zhan M Z, Sun W D, Ling M X et al. 2015. Huangyan ridge subduction and formation of porphyry Cu-Au deposits in Luzon. Acta Petrologica Sinica, 31(7): 2101-2114. (in Chinese with English abstract)
Copyright © Haiyang Xuebao