Cite this paper:
KONG Fancui, SHA Zhanjiang, DU Jinzhou, SU Weigang, YU Chenguang, ZHAO Shunli, HU Jufang, YE Mei. Analysis of the distribution characteristics of 226Ra and 228Ra and their sources in the western part of Qinghai Lake[J]. Journal of Oceanology and Limnology, 2015, 33(6): 1402-1412

Analysis of the distribution characteristics of 226Ra and 228Ra and their sources in the western part of Qinghai Lake

KONG Fancui1,2,3, SHA Zhanjiang1,4, DU Jinzhou5, SU Weigang1,2, YU Chenguang1,2, ZHAO Shunli1,2, HU Jufang1,2, YE Mei4
1 Qinghai Institute of Salt Lakes, Chinese Academy of Science s, Xining 810008, China;
2 University of Chinese Academy of Sciences, Beijing 100049, China;
3 Zoucheng Bureau of Land and Resources, Zoucheng 273500, China;
4 Life and Geographical Sciences College and Education Ministry Key Laboratory of Environments and Resources in the Tibetan Plateau, Qinghai Normal University, Xining 810008, China;
5 State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200062, China
Abstract:
The 226Ra and 228Ra activities of Qinghai Lake surface water, groundwater, river water, suspended particles, and bottom sediments were measured in a gamma-ray spectrometer. The sources of 226Ra and 228Ra were discussed according to their distribution characteristics. 226Ra and 228Ra activities (dpm/(100 L)) ranged from 14.13±0.22 to 19.22±0.42 and 17.72±0.66 to 30.96±1.47 in the surface water of the North Bay, respectively, and from 7.88±0.24 to 33.80±0.47 and 15.73±0.74 to 57.31±1.44, respectively, in the South Bay. The surface water near the estuary had a lower salinity and had a higher concentration of radium isotopes than the samples collected further away. The farther offshore the sample, the higher the salinity was, and the lower the radium isotope activity. The distribution of radium activities in the western part of Qinghai Lake is controlled by several factors, including Buha River runoff, desorption from suspended particles derived from the river, groundwater discharge, and a small amount of diffusion from the sediment.
Key words:    226Ra|228Ra|surface water of Qinghai lake|groundwater|river water|Qinghai Lake   
Received: 2014-12-11   Revised: 2015-02-21
Tools
PDF ( KB) Free
Print this page
Add to favorites
Email this article to others
Authors
Articles by KONG Fancui
Articles by SHA Zhanjiang
Articles by DU Jinzhou
Articles by SU Weigang
Articles by YU Chenguang
Articles by ZHAO Shunli
Articles by HU Jufang
Articles by YE Mei
References:
Bian Q T, Liu J Q, Luo X Q, Xiao J. 2000. Geotectonic setting formation and evolution of the Qinghai lake. Seismol.Geol., 22: 20-26.
Breier J A, Edmonds H N. 2007. High 226Ra and 228Ra activities in Nueces Bay, Texas indicate large submarine saline discharges. Mar. Chem., 103: 131-145.
Burnett W C, Aggarwal P K, Aureli A, Bokuniewicz H, Cable J E, Charette M A, Kontar E, Krupa S, Kulkarni K M, Loveless A, Moore W S, Oberdorfer J A, Oliveira, J, Ozyurt N, Povinec P, Privitera A M G, Rajar R, Ramessur R T, Scholten J, Stieglitz T, Taniguchi M, Turner J V. 2006. Quantifying submarine groundwater discharge in the coastal zone via multiple methods. Sci. Total Environ., 367: 498-543.
Burnett W C, Henry B, Markus H, Moore W S, Makoto T. 2003. Groundwater and pore water inputs to the coastal zone. Biogeochemistry, 66: 3-33.
Burnett W C, Peterson R, Moore W S, de Oliveira J. 2008.Radon and radium isotopes as tracers of submarine groundwater discharge-results from the Ubatuba, Brazil SGD assessment intercomparison. Estuar. Coast. Shelf Sci., 76: 501-511.
Chinese Academy of Science. 1994. The Scientific Center for Resources and Environment in West China. Evolution of recent environment in Qinghai lake and its prediction.Science Press, Beijing, China.
Dukat D A, Kuehl S A. 1995. Non-steady-state 210Pb flux and the use of 228Ra, 226Ra as a geochronometer on the Amazon continental shelf. Mar. Geol., 125: 329-350.
Dulaiova H, Burnett W C. 2008. Evaluation of the flushing rates of Apalachicola Bay, Florida via natural geochemical tracers. Mar. Chem., 109: 395-408.
Dulaiova H, Burnett W, Wattayakorn G, Sojisuporn P. 2006.Are groundwater inputs into river-dominated areas important? The Chao Phraya River-Gulf of Thailand.
Limnol. Oceanogr., 51: 2 232-2 247.Elsinger R J, Moore W S. 1980. 226Ra behavior in the Pee Dee River-Winyah Bay estuary. Earth Planet Sci. Lett., 48:239-249.
Elsinger R J, Moore W S. 1983. 224Ra, 228Ra, and 226Ra in Winyah Bay and Delaware Bay. Earth Planet Sci. Lett., 64: 430-436.
Gonneea M E, Morris P J, Dulaiova H, Charette M A. 2008.New perspectives on radium behavior within a subterranean estuary. Mar. Chem., 109: 250-267.
Huang Y P, Jiang D S, Xu M Q, Chen M, Qiu Y S. 1997. A study on horizontal eddy diffusion in the surface water of the northeastern south China sea based od 228Ra tracer.Tropic Oceanol., 16: 67-74.
Hussain N, Church T, Kim G. 1999. Use of 222Rn and 226Ra to trace groundwater discharge into the Chesapeake Bay.Mar. Chem., 65: 127-134.
Ji T, Du J Z, Moore W S, Zhang G S, Su N, Zhang J. 2012a.Nutrient inputs to a Lagoon through submarine groundwater discharge: The case of Laoye Lagoon, Hainan, China. J. Mar. Syst., 111-112: 253-262.
Ji Z Q, Hu D, Weng H X, Zhang F, Han Z D. 2012b. Temporal and spatial variations of 226Ra in coastal sea and the estimation of submarine groundwater discharge (SGD).Geochimica, 41: 15-22.
Key R, Stallard R, Moore W, Sarmiento J. 1985. Distribution and flux of 226Ra and 228Ra in the Amazon River estuary. J.Geophys. Res. C, 90: 6 995-7 004.
Kim G, Ryu J-W, Yang H-S, Yun S-T. 2005. Submarine groundwater discharge (SGD) into the Yellow Sea revealed by 228Ra and 226Ra isotopes: Implications for global silicate fluxes. Earth Planet Sci. Lett., 237: 156-166.
Krest J M, Harvey J W. 2003. Using natural distributions of short-lived radium isotopes to quantify groundwater discharge and recharge. Limnol. Oceanogr., 48: 290-298.
Krest J M, Moore, W S. 1999. 226Ra and 228Ra in the mixing zones of the Mississippi and Atchafalaya Rivers:indicators of groundwater input. Mar. Chem., 64: 129-152.
Lee Y-W, Hwang D-W, Kim G, Lee W-C, Oh H-T. 2009.Nutrient inputs from submarine groundwater discharge(SGD) in Masan Bay, an embayment surrounded by heavily industrialized cities, Korea. Sci. Total Environ., 407: 3 181-3 188.
Li Y-H, Mathieu G, Biscaye P, Simpson H J. 1977. The flux of 226Ra from estuarine and continental shelf sediments.Earth Planet Sci. Lett., 37: 237-241.
Liu G S, Huang Y P, Chen B X. 1999. Measurement of 224Ra, 226Ra and 228Ra in seawater using Mn-fiber adsorption— Y spectrum method. Acta Oceanol. Sin., 21 (5): 65-71.
Liu H T, Guo Z R, Yuan X J, Li K P, Zhang B. 2013. Utility of radium isotopes for evaluating residence time and submarine groundwater discharge. Earth Sci. J. China Univ. Geosci., 38: 599-606.
Miller R L, Kraemer T F, McPherson B F. 1990. Radium and radon in Charlotte Harbor estuary, Florida. Est. Coast.Shelf Sci., 31: 439-457.
Moore W S, Krest J. 2004. Distribution of 223Ra and 224Ra in the plumes of the Mississippi and Atchafalaya Rivers and the Gulf of Mexico. Mar. Chem., 86: 105-119.
Moore W S, Sarmiento J L, Key R M. 2008. Submarine groundwater discharge revealed by 228Ra distribution in the upper Atlantic Ocean. Nature Geosci., 1: 309-311.
Moore W S. 1981. Radium isotopes in the Chesapeake Bay.Est. Coast. Shelf Sci., 12: 713-723.
Moore W S. 1996. Large groundwater inputs to coastal waters revealed by 226Ra enrichments. Nature, 380: 612-614.
Moore W S. 1999. The subterranean estuary: a reaction zone of ground water and sea water. Mar. Chem., 65: 111-125.
Moore W S. 2000. Determining coastal mixing rates using radium isotopes. Cont. Shelf Res., 20: 1 993-2 007.
Moore W S. 2003. Sources and fluxes of submarine groundwater discharge delineated by radium isotopes.Biogeochemistry, 66: 75-93.
Moore W S. 2006. Radium isotopes as tracers of submarine groundwater discharge in Sicily. Cont. Shelf Res., 26:852-861.
Moore W S. 2008. Fifteen years experience in measuring 224Ra and 223Ra by delayed-coincidence counting. Mar. Chem., 109: 188-197.
Moore W. 1984. Mechanism of transport of U-Th series radioisotopes from solids into ground water. Geochim.Cosmochim. Acta, 48: 395-399.
Peterson R N, Burnett W C, Taniguchi M, Chen J, Santos I R, Misra S. 2008. Determination of transport rates in the Yellow River-Bohai Sea mixing zone via natural geochemical tracers. Cont. Shelf Res., 28: 2 700-2 707.
Porcelli D, Swarzenski P W. 2003. The behavior of U-and Thseries nuclides in groundwater. Rev. Mineral. Geochem., 52: 317-361.
Su C-C, Huh C-A. 2002. 210Pb, 137Cs and 239,240Pu in East China Sea sediments: sources, pathways and budgets of sediments and radionuclides. Mar. Geol., 183: 163-178.
Su N, Burnett W C, MacIntyre H L, Liefer J D, Peterson R N, Viso R. 2014. Natural radon and radium isotopes for assessing groundwater discharge into Little Lagoon, AL:Implications for harmful algal blooms. Estuaries Coasts, 37: 893-910.
Su N, Du J Z, Moore W S, Liu S M, Zhang J. 2011. An examination of groundwater discharge and the associated nutrient fluxes into the estuaries of eastern Hainan Island, China using 226Ra. Sci. Total Environ., 409: 3 909-3 918.
Su N, Du J, Li Y, Zhang J. 2013. Evaluation of surface water mixing and associated nutrient fluxes in the East China Sea using 226Ra and 228Ra. Mar. Chem., 156: 108-119.
Su N. 2013. Tracing Coastal Water Mixing Processes and Submarine Groundwater Discharge by Radium Isotopes.East China Normal University.
Suksi J, Rasilainen K, Casanova J, Ruskeeniemi T, Blomqvis, R, Smellie J. 2001. U-series disequilibria in a groundwater flow route as an indicator of uranium migration processes.J. Cont. Hydrol., 47: 187-196.
Swarzenski P W, Reich C, Kroeger K D, Baskaran, M. 2007.Ra and Rn isotopes as natural tracers of submarine groundwater discharge in Tampa Bay, Florida. Mar.Chem., 104: 69-84.
Wang X L, Du J Z, Ji T, Wen T Y, Liu S M, Zhang J. 2014. An estimation of nutrient fluxes via submarine groundwater discharge into the Sanggou Bay—a typical multi-species culture ecosystem in China. Mar. Chem., 167: 113-122.
Watters D L, Kline D E, Coale K H, Cailliet G M. 2006.Radiometric age confirmation and growth of a deep-water marine fish species: The bank rockfish, Sebastes rufus.Fish. Res., 81: 251-257.
Webster I T, Hancock G J, Murray A S. 1995. Modelling the effect of salinity on radium desorption from sediments.Geochim. Cosmochim. Acta, 59: 2 469-2 476.
Wu S Y, Chen J X, Shi C T. 1983. Determination of 226Ra in the marine sediments in the Xiamen Harbour. Taiwan Stait., 2: 23-29.
Yang H-S, Hwang D-W, Kim G. 2002. Factors controlling excess radium in the Nakdong River estuary, Korea:submarine groundwater discharge versus desorption from riverine particles. Mar. Chem., 78: 1-8.
Yuan B Y, Chen K Z, Bowler J M, Ye S J. 1990. The formation and evolution of the Qinghai lake. Quatern. Sci., 3: 233-243.
Zhang L, Liu Z, Zhang J, Hong G H, Park Y, Zhang F. 2007.Reevaluation of mixing among multiple water masses in the shelf: an example from the East China Sea. Cont. Shelf Res., 27: 1 969-1 979.
Copyright © Haiyang Xuebao