Cite this paper:
Sierra A. DE LEON, Anna E. JACKSON, William BLACK, William THOMAS, Matt KRUBACK, June BAXTER, Bonnie K. BAXTER. An analysis of Great Salt Lake Winogradsky columns[J]. Journal of Oceanology and Limnology, 2023, 41(4): 1352-1368

An analysis of Great Salt Lake Winogradsky columns

Sierra A. DE LEON1, Anna E. JACKSON1, William BLACK3, William THOMAS3, Matt KRUBACK2, June BAXTER1, Bonnie K. BAXTER1
1 Great Salt Lake Institute, Westminster University, Salt Lake City 84105, USA;
2 Department of Visual Arts, Westminster University, Salt Lake City 84105, USA;
3 Natural History Museum of Utah, University of Utah, Salt Lake City 84112, USA
Sergei Winogradsky illuminated revolutionary concepts and produced a tool to visualize complex microbial communities and their metabolisms over time: columns displaying aquatic consortia with variety of niches. We worked with museums in Utah to create Winogradsky columns that would highlight aesthetic properties of the Great Salt Lake (GSL) ecosystem, which has a salinity gradient from the freshwater wetlands to salt saturation. One column, constructed using haloarchaea-rich hypersaline brine and oolitic sand of the lake’s north arm, was enriched with nutrients, and resulted in the desired pink hue over time. After a seven-year maturation period, we examined the microbial taxa present in the water through 16S/18S rRNA and Internal Transcribed Spacer (ITS) gene sequencing. A pigment analysis revealed an abundance of bacteriochlorophyll a. The presence of this pigment coupled with the DNA sequencing results, suggest that the haloarchaea that dominate the GSL brine, were not responsible for the pink coloration, but instead Gammaproteobacteria, especially Halorhodospira species. Among the eukaryotes, the lack of phytoplankton and the abundance of fungi were noteworthy observations. These data likely relate to the reduction of oxygen in a non-aerated sealed system over time. Our second exhibit had the goal of educating museum goers about the varying salinities of Great Salt Lake. Here we employed three distinct columns of water and sediment from this salinity gradient. Observations of these columns overtime gave us information about invertebrate communities in addition to the microbial consortia. Both installations taught us about comparing an artificial environment in a museum setting to the natural ecosystem. Taken together, we present the data collected and lessons learned from using Winogradsky columns in public spaces for teaching about an important saline lake.
Key words:    Great Salt Lake|Winogradsky|halophiles|extreme environment|museum exhibit   
Received: 2022-04-09   Revised:
PDF (5422 KB) Free
Print this page
Add to favorites
Email this article to others
Articles by Sierra A. DE LEON
Articles by Anna E. JACKSON
Articles by William BLACK
Articles by William THOMAS
Articles by Matt KRUBACK
Articles by June BAXTER
Articles by Bonnie K. BAXTER
Almeida-Dalmet S, Baxter B K. 2020. Unexpected complexity at salinity saturation: microbial diversity of the north arm of Great Salt Lake. In: Baxter B K, Butler J K eds. Great Salt Lake Biology: A Terminal Lake in a Time of Change. Springer, Cham. p.119-144.
Almeida-Dalmet S, Sikaroodi M, Gillevet P M et al. 2015.Temporal study of the microbial diversity of the north arm of Great Salt Lake, Utah, U.S. Microorganism, 3(3):310-326,
Anderson I C, Campbell C D, Prosser J I. 2003. Potential bias of fungal 18S rDNA and internal transcribed spacer polymerase chain reaction primers for estimating fungal biodiversity in soil. Environmental Microbiology, 5(1):36-47,
Barrett K L, Belovsky G E. 2020. Invertebrates and phytoplankton of Great Salt Lake: is salinity the driving factor? In: Baxter B K, Butler J K eds. Great Salt Lake Biology: A Terminal Lake in a Time of Change. Springer, Cham. p.145-173.
Baxter, B K. 2018. Great Salt Lake microbiology: a historical perspective. International Microbiology, 21(3): 79-95.
Baxter B K, Butler J K. 2020. Great Salt Lake Biology: A Terminal Lake in a Time of Change. Springer, Cham. 527p.
Baxter B K, Litchfield C D, Sowers K et al. 2005. Microbial diversity of Great Salt Lake. In: Gunde-Cimerman N, Oren A, Plemenitaš A eds. Adaptation to Life at High Salt Concentrations in Archaea, Bacteria, and Eukarya.Springer, Dordrecht. p.9-25.
Baxter B K, Zalar P. 2019. The extremophiles of Great Salt Lake: Complex microbiology in a dynamic hypersaline ecosystem. In: Seckbach J, Rampelotto P eds. Model Ecosystems in Extreme Environments. Elsevier, Amsterdam. p.57-99.
Bayles M, Belasco B C, Breda A J et al. 2020. The haloarchaea of Great Salt Lake as models for potential extant life on Mars. In: Seckbach J, Stan-Lotter H eds.Extremophiles as Astrobiological Models. John Wiley & Sons, Hoboken. p.83-124.
Belovsky G E, Stephens D, Perschon C et al. 2011. The Great Salt Lake ecosystem (Utah, USA): long term data and a structural equation approach. Ecosphere, 2(3):1-40.
Bordenstein S. 2022. Winogradsky column. In: Microbial Life Educational Resources on 2022-02-22.
Bowen J L, Crump B C, Deegan L A et al. 2009. Salt marsh sediment bacteria: their distribution and response to external nutrient inputs. The ISME Journal, 3(8): 924-934,
Boyd E S, Yu R Q, Barkay T et al. 2017. Effect of salinity on mercury methylating benthic microbes and their activities in Great Salt Lake, Utah. Science of the Total Environment, 581-582: 495-506,
Brandt K K, Ingvorsen K. 1997. Desulfobacter halotolerans sp. nov., a halotolerant acetate-oxidizing sulfate-reducing bacterium isolated from sediments of Great Salt Lake, Utah. Systematic and Applied Microbiology, 20(3):366-373.
Brandt K K, Patel B K C, Ingvorsen K. 1999. Desulfocella halophila gen. nov., sp. nov., a halophilic, fatty-acidoxidizing, sulfate-reducing bacterium isolated from sediments of the Great Salt Lake. International Journal of Systematic and Evolutionary Microbiology, 49(1):193-200.
Brandt K K, Vester F, Jensen A N et al. 2001. Sulfate reduction dynamics and enumeration of sulfate-reducing bacteria in hypersaline sediments of the Great Salt Lake(Utah, USA). Microbial Ecology, 41(1): 1-11,
Brown P D, Craine J M, Richards D et al. 2022. DNA metabarcoding of the phytoplankton of Great Salt Lake's Gilbert Bay: spatiotemporal assemblage changes and comparisons to microscopy. Journal of Great Lakes Research, 48(1): 110-124, 2021.10.016.
Choi D H, Cho B C. 2005. Idiomarina seosinensis sp. nov., isolated from hypersaline water of a solar saltern in Korea. International Journal of Systematic and Evolutionary Microbiology, 55(1): 379-383.
Cui H L, Lin Z Y, Dong Y et al. 2007. Halorubrum litoreum sp. nov., an extremely halophilic archaeon from a solar saltern. International Journal of Systematic and Evolutionary Microbiology, 57(10): 2204-2206.
Cui H L, Tohty D, Feng J et al. 2006. Natronorubrum aibiense sp. nov., an extremely halophilic archaeon isolated from Aibi Salt Lake in Xin-Jiang, China, and emended description of the genus Natronorubrum.International Journal of Systematic and Evolutionary Microbiology, 56(7): 1515-1517.
Daniel R. 2005. The metagenomics of soil. Nature Reviews Microbiology, 3(6): 470-478,
Dia Art Foundation. 2022. Robert Smithson, Spiral Jetty, 1970. Accessed on 2022-02-22.
Dillard L R, Payne D D, Papin J A. 2021. Mechanistic models of microbial community metabolism. Molecular Omics, 17(3): 365-375, 00154F.
Domagalski J L, Eugster H P, Jones B F. 1990. Trace metal geochemistry of Walker, Mono, and Great Salt Lakes.In: Spencer R J, Chou I-M eds. Fluid-Mineral Interactions: A Tribute to H. P. Eugster. The Geochemical Society, Washington. p.315-353.
Dworkin M, Gutnick D. 2012. Sergei Winogradsky: a founder of modern microbiology and the first microbial ecologist. FEMS Microbiology Reviews, 36(2): 364-379,
Dyall-Smith M. 2009 Halohandbook: protocols for haloarchaeal genetics, version 7.2. Accessed on 2022-02-22.
Fendrich C. 1988. Halovibrio variabilis gen. nov. sp. nov., Pseudomonas halophila sp. nov. and a new halophilic aerobic coccoid Eubacterium from Great Salt Lake, Utah, USA. Systematic and Applied Microbiology, 11(1):36-43.
Frigaard N U, Dahl C. 2008. Sulfur metabolism in phototrophic sulfur bacteria. Advances in Microbial Physiology, 54: 103-200.
Genetic Science Learning Center, University of Utah. 2022.Great Salt Lake Winogradsky Columns. In: Extreme Environments. Accessed on 2022-02-22.
Grote M. 2018. Petri dish versus Winogradsky column: a longue durée perspective on purity and diversity in microbiology, 1880s-1980s. History and Philosophy of the Life Sciences, 40(1): 11,
Hirschler-Réa A, Matheron R, Riffaud C et al. 2003.Isolation and characterization of spirilloid purple phototrophic bacteria forming red layers in microbial mats of Mediterranean salterns: description of Halorhodospira neutriphila sp. nov. and emendation of the genus Halorhodospira. International Journal of Systematic and Evolutionary Microbiology, 53(1): 153-163,
Hoven H M. 2012. Impounded wetlands of Great Salt Lake with emphasis on condition of SAV in Farmington Bay.The Institute for Watershed Sciences. Accessed on 2022-02-22.
Imhoff J F. 2001. True marine and halophilic anoxygenic phototrophic bacteria. Archives of Microbiology, 176(4):243-254,
Imhoff J F, Trüper H G. 1981. Ectothiorhodospira abdelmalekii sp. nov., a new halophilic and alkaliphilic phototrophic bacterium. Zentralblatt für Bakteriologie Mikrobiologie und Hygiene: I. Abt. Originale C:Allgemeine, angewandte und ökologische Mikrobiologie, 2(3): 228-234.
Ingvorsen K, Brandt K K. 2002. Anaerobic microbiology and sulfur cycling in hypersaline sediments with special reference to Great Salt Lake. In: Gwynn J W ed. Great Salt Lake: An Overview of Change. Utah Geological and Mineral Survey, Salt Lake City. p.387-398.
Ionescu D, Lipski A, Altendorf K et al. 2007.Characterization of the endoevaporitic microbial communities in a hypersaline gypsum crust by fatty acid analysis. Hydrobiologia, 576(1): 15-26,
Jones D L, Baxter B K. 2017. DNA repair and photoprotection: mechanisms of overcoming environmental ultraviolet radiation exposure in halophilic archaea. Frontiers in Microbiology, 8: 1882,
Kelly M, Norgård S, Liaaen-Jensen S. 1970. Bacterial carotenoids. 31. C50-carotenoids 5. Carotenoids of Halobacterium salinarium, especially bacterioruberin.Acta Chemica Scandinavica, 24(6): 2169-2182,
Kemp B L, Tabish E M, Wolford A J et al. 2018. The biogeography of Great Salt Lake halophilic archaea:testing the hypothesis of avian mechanical carriers.Diversity, 10(4): 124,
Kettenring K M, Cranney C R, Downard R et al. 2020.Invasive plants of Great Salt Lake wetlands: what, where, when, how, and why? In: Baxter B K, Butler J K eds. Great Salt Lake Biology: A Terminal Lake in a Time of Change. Springer, Cham. p.397-434.
Khanafari A, Khavarinejad D, Mashinchian A. 2010.Solar salt lake as natural environmental source for extraction halophilic pigments. Iranian Journal of Microbiology, 2(2): 103-109.
Kimura Y, Nojima S, Nakata K et al. 2021. Electrostatic charge controls the lowest LH1 Qy transition energy in the triply extremophilic purple phototrophic bacterium, Halorhodospira halochloris. Biochimica et Biophysica Acta (BBA) – Bioenergetics, 1862(11): 148473,
Kjeldsen K U, Loy A, Jakobsen T F et al. 2007. Diversity of sulfate-reducing bacteria from an extreme hypersaline sediment, Great Salt Lake (Utah). FEMS Microbiology Ecology, 60(2): 287-298,
Larsen L. 2021. Two men paddled across the fringes of Great Salt Lake to document its decline. Here’s what they saw.The Salt Lake Tribune, Salt Lake City, Utah, USA. on 2022-02-22.
Lindsay M R, Anderson C, Fox N et al. 2017. Microbialite response to an anthropogenic salinity gradient in Great Salt Lake, Utah. Geobiology, 15(1): 131-145.
Lindsay M R, Dunham E C, Boyd E S. 2020. Microbialites of Great Salt Lake. In: Baxter B K, Butler J K eds. Great Salt Lake Biology: A Terminal Lake in a Time of Change. Springer, Cham. p.87-118.
Lupton F S, Conrad R, Zeikus J G. 1984. Physiological function of hydrogen metabolism during growth of sulfidogenic bacteria on organic substrates. Journal of Bacteriology, 159(3): 843-849.
Marcarelli A M, Wurtsbaugh W A, Griset O. 2006. Salinity controls phytoplankton response to nutrient enrichment in the Great Salt Lake, Utah, USA. Canadian Journal of Fisheries and Aquatic Sciences, 63(10): 2236-2248.
Marden B, Brown P, Bosteels T. 2020. Great Salt Lake Artemia: ecosystem functions and services with a global reach. In: Baxter B K, Butler J K eds. Great Salt Lake Biology: A Terminal Lake in a Time of Change.Springer, Cham. p.175-237.
McGenity T J, Gessesse A, Hallsworth J E et al. 2020.Visualizing the invisible: class excursions to ignite children’s enthusiasm for microbes. Microbial Biotechnology, 13(4): 844-887,
Meuser J E, Baxter B K, Spear J R et al. 2013. Contrasting patterns of community assembly in the stratified water column of Great Salt Lake, Utah. Microbial Ecology, 66(2): 268-280.
Moss A, Jensen E, Gusset M. 2017. Probing the link between biodiversity-related knowledge and self-reported proconservation behavior in a global survey of zoo visitors. Conservation Letters, 10(1): 33-40.
Mujtaba T, Lawrence M, Oliver M, Reiss M J. 2018.Learning and engagement through natural history museums. Studies in Science Education, 54(1): 41-67.
Naftz D, Angeroth C, Kenney T et al. 2008. Anthropogenic influences on the input and biogeochemical cycling of nutrients and mercury in Great Salt Lake, Utah, USA.Applied Geochemistry, 23(6): 1731-1744.
NASA. 2019. Accessed on 2022-02-22.
Natural History Museum of Utah. 2022. Great Salt Lake Gallery. Accessed on 2022-02-22.
Oelze J. 1985. 9 Analysis of bacteriochlorophylls. Methods in Microbiology, 18: 257-284.
Oh D, Porter K, Russ B et al. 2010.Diversity of Haloquadratum and other haloarchaea in three, geographically distant, Australian saltern crystallizer ponds. Extremophiles, 14(2): 161-169.
Oh P S, Oh S J. 2011. What teachers of science need to know about models: an overview. International Journal of Science Education, 33(8): 1109-1130,
Oren A. 2002. Molecular ecology of extremely halophilic archaea and bacteria. FEMS Microbiology Ecology, 39(1): 1-7.
Oren A. 2011. Characterization of pigments of prokaryotes and their use in taxonomy and classification. Methods in Microbiology, 38: 261-282.
Peng X N, Gilmore S P, O’Malley M A. 2016. Microbial communities for bioprocessing: lessons learned from nature. Current Opinion in Chemical Engineering 14:103-109,
Phelps T, Zeikus J G. 1980. Microbial ecology of anaerobic decomposition in Great Salt Lake. Proceedings of the American Society for Microbiology Conference.Wisconsin University, Madison, USA.
Rodriguez-Sanchez A, Leyva-Diaz J C, Muñoz-Palazon B et al. 2019. Influence of salinity cycles in bioreactor performance and microbial community structure of membrane-based tidal-like variable salinity wastewater treatment systems. Environmental Science and Pollution Research, 26(1): 514-527.
Rundell E A, Banta L M, Ward D V et al. 2014. 16S rRNA gene survey of microbial communities in Winogradsky columns. PLoS One, 9(8): e104134,
Saxton H J, Goodman J R, Collins J N et al. 2013. Maternal transfer of inorganic mercury and methylmercury in aquatic and terrestrial arthropods. Environmental Toxicology and Chemistry, 32(11): 2630-2636,
Schneegurt M A. 2012. Media and conditions for the growth of halophilic and halotolerant bacteria and archaea. In:Vreeland R H ed. Advances in Understanding the Biology of Halophilic Microorganisms. Springer, Dordrecht. p.35-58.
Schoch C L, Ciufo S, Domrachev M et al. 2020. NCBI taxonomy: a comprehensive update on curation, resources and tools. Database, 2020: baaa062,
Smithson R. 1996. Robert Smithson: The Collected Writings, In: Flam J ed. Documents of Twentieth-Century Art. University of California Press, Oakland, CA, USA. 424p.
Sorokin D Y, Tindall B J. 2006. The status of the genus name Halovibrio Fendrich 1989 and the identity of the strains Pseudomonas halophila DSM 3050 and Halomonas variabilis DSM 3051. Request for an opinion.International Journal of Systematic and Evolutionary Microbiology, 56(2): 487-489.
Stanier R Y. 1951. The life-work of a founder of bacteriology. The Quarterly Review of Biology, 26(1):35-37.
Tazi L, Breakwell D P, Harker A R et al. 2014. Life in extreme environments: microbial diversity in Great Salt Lake, Utah. Extremophiles, 18(3): 525-535.
The Salt Project. 2021. Accessed on 2022-02-22.
Then J, Trüper H G. 1983. Sulfide oxidation in Ectothiorhodospira abdelmalekii. Evidence for the catalytic role of cytochrome c-551. Archives of Microbiology, 135(4): 254-258.
Urmeneta J, Duró A. 2011. Explaining life: microorganisms in science museums. The American Biology Teacher 73(5): 265-269,
Utah Museum of Fine Arts. 2021. Confluence. Accessed on 2022-02-22.
Vahed S Z, Forouhandeh H, Hassanzadeh S et al. 2011.Isolation and characterization of halophilic bacteria from Urmia Lake in Iran. Microbiology, 80(6): 834-841.
Wainwright M. 1997. Extreme pleomorphism and the bacterial life cycle: a forgotten controversy. Perspectives in Biology and Medicine, 40(3): 407-414.
Waksman S A. 1953. Sergei nikolaevitch winogradsky: 1856-1953. Science, 118(3054): 36-37.
Walters W, Hyde E R, Berg-Lyons D et al. 2016. Improved bacterial 16S rRNA gene (V4 and V4-5) and fungal internal transcribed spacer marker gene primers for microbial community surveys. MSystems, 1(1): e00009-15.
Wightman J. 2022. Accessed on 2022-02-22.
Williams K P, Gillespie J J, Sobral B W S et al. 2010.Phylogeny of Gammaproteobacteria. Journal of Bacteriology, 192(9): 2305-2314,
Winogradsky S. 1888. Microbiologie du sol Problemes et methodes; cinquante ans de recherches. Masson et Cie, Paris. 863p.
Wurtsbaugh W A. 2007. Preliminary analyses of selenium bioaccumulation in benthic food webs of the Great Salt Lake, Utah. Utah State University, Salt Lake City, USA.
Xin H, Itoh T, Zhou P et al. 2000. Natrinema versiforme sp.nov., an extremely halophilic archaeon from Aibi Salt Lake, Xinjiang, China. International Journal of Systematic and Evolutionary Microbiology, 50(3): 1297-1303.
Zeikus J G, Hegge P W, Thompson T E et al. 1983. Isolation and description of Haloanaerobium praevalens gen. nov. and sp. nov., an obligately anaerobic halophile common to Great Salt Lake sediments. Current Microbiology, 9(4): 225-233.
Zhang H H, Huang T L, Chen S N. 2015. Ignored sediment fungal populations in water supply reservoirs are revealed by quantitative PCR and 454 pyrosequencing.BMC Microbiology, 15: 44.
Copyright © Haiyang Xuebao