Cite this paper:
TIAN Jiyuan, JIA Hongbing, YU Juan. A description of alkaline phosphatases from marine organisms[J]. Journal of Oceanology and Limnology, 2016, 34(4): 795-809

A description of alkaline phosphatases from marine organisms

TIAN Jiyuan1, JIA Hongbing1, YU Juan2
1 College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China;
2 Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China
Abstract:
Alkaline phosphatases (APs) are non-specific phosphohydrolases, and they are widely used in clinical diagnostics and biological studies. APs are widespread in nature and exhibit different structural formulations. Based on the diversity of biogenetic sources, APs exhibit temperature-propensity traits, and they are classified as psychrophilic, mesophilic, and thermophilic. In this article, the characteristics of psychrophilic APs from marine organisms were described, accompanied by a simple description of APs from other organisms. This review will facilitate better utilization of marine APs in the biotechnology field.
Key words:    alkaline phosphatase|disulfide bond|interface|hydrophobicity|psychrophilic   
Received: 2015-01-23   Revised: 2015-04-14
Tools
PDF (266 KB) Free
Print this page
Add to favorites
Email this article to others
Authors
Articles by TIAN Jiyuan
Articles by JIA Hongbing
Articles by YU Juan
References:
Almog O, Gallagher D T, Ladner J E, Strausberg S, Alexander P, Bryan P, Gilliland G L. 2002. Structural basis of thermostability. Analysis of stabilizing mutations in subtilisin BPN'. J. Biol. Chem., 277 (30): 27 553-27 558.
Amin I, Koh B K, Asmah R. 2004. Effect of cacao liquor extract on tumor marker enzymes during chemical hepatocarcinogenesis in rats. J. Med. Food, 7 (1): 7-12.
Ásgeirsson B, Adalbjörnsson B V, Gylfason G A. 2007. Engineered disulfide bonds increase active-site local stability and reduce catalytic activity of a cold-adapted alkaline phosphatase. Biochim. Biophys. Acta, 1774 (6): 679-687.
Ásgeirsson B, Andrésson Ó S. 2001. Primary structure of coldadapted alkaline phosphatase from a Vibrio sp. as deduced from the nucleotide gene sequence. Biochim. Biophys. Acta, 1549 (1): 99-111.
Ásgeirsson B, Guðjónsdóttir K. 2006. Reversible inactivation of alkaline phosphatase from Atlantic cod (Gadus morhua) in urea. Biochim. Biophys. Acta, 1764 (2): 190-198.
Ásgeirsson B, Nielsen B N, Højrup P. 2003. Amino acid sequence of the cold-active alkaline phosphatase from Atlantic cod (Gadus morhua). Comp. Biochem. Physiol. B, 136 (1): 45-60.
Bortolato M, Besson F, Roux B. 1999. Role of metal ions on the secondary and quaternary structure of alkaline phosphatase from bovine intestinal mucosa. Proteins, 37 (2): 310-318.
Bossi M, Hoylaerts M F, Millan J L. 1993. Modifications in a flexible surface loop modulate the isozyme-specific properties of mammalian alkaline phosphatases. J. Biol. Chem., 268 (34): 25 409-25 416.
Bradshaw R A, Cancedda F, Ericsson L H, Neumann P A, Piccoli S P, Schlesinger M J, Shriefer K, Walsh K A. 1981. Amino acid sequence of Escherichia coli alkaline phosphatase. Proc. Natl. Acad. Sci. USA, 78 (6): 3 473-3 477.
Clarke J, Hounslow A M, Fersht A R, Bond C J, Daggett V. 2000. The effects of disulfide bonds on the denatured state of barnase. Protein Sci., 9 (12): 2 394-2 404.
Coleman J E. 1992. Structure and mechanism of alkaline phosphatase. Ann. Rev. Biophys. Biomol. Struct., 21 (1): 441-483.
Columbus L, Hubbell W L. 2002. A new spin on protein dynamics. Trends Biochem. Sci., 27 (6): 288-295. Creighton T E. 1992. The disulfide folding pathway of BPTI. Science, 256 (5053): 111-112.
Dani V S, Ramakrishnan C, Varadarajan R. 2003. MODIP revisited: re-evaluation and refinement of an automated procedure for modeling of disulfide bonds in proteins. Protein Eng., 16 (3): 187-193.
de Backer M M E, McSweeney S, Lindley P F, Hough E. 2004. Ligand-binding and metal-exchange crystallographic studies on shrimp alkaline phosphatase. Acta Crystallograph. D Biol. Crystallogr., 60 (9): 1 555-1 561.
de Backer M, McSweeney S, Rasmussen H B, Riise B W, Lindley P, Hough E. 2002. The 1.9 Å crystal structure of heat-labile shrimp alkaline phosphatase. J. Mol. Biol., 318 (5): 1 265-1 274.
Dolginova E A, Roth E, Silman I, Weiner L M. 1992. Chemical modification of Torpedo acetylcholinesterase by disulfides: appearance of a ‘molten globule' state. Biochemistry, 31 (48): 12 248-12 254.
Eisenmesser E Z, Millet O, Labeikovsky W, Korzhnev D M, Wolf-Watz M, Bosco D A, Skalicky J J, Kay L E, Kern D. 2005. Intrinsic dynamics of an enzyme underlies catalysis. Nature, 438 (7064): 117-121.
Feller G, Gerday C. 2003. Psychrophilic enzymes: hot topics in cold adaptation. Nat. Rev. Microbiol., 1 (3): 200-208.
Golotin V, Balabanova L, Likhatskaya G, Rasskazov V. 2015. Recombinant production and characterization of a highly active alkaline phosphatase from marine bacterium Cobetia marina. Mar. Biotechnol., 17 (2): 130-143.
Gristwood T, Fineran P C, Everson L, Williamson N R, Salmond G P. 2009. The PhoBR two-component system regulates antibiotic biosynthesis in Serratia in response to phosphate. BMC Microbiol., 9: 112.
Gudjónsdóttir K, Ásgeirsson B. 2008. Effects of replacing active site residues in a cold-active alkaline phosphatase with those found in its mesophilic counterpart from Escherichia coli. FEBS J., 275 (1): 117-127.
Hauksson J B, Andrésson Ó S, Ásgeirsson B. 2000. Heat-labile bacterial alkaline phosphatase from a marine Vibrio sp. Enzyme Microb. Technol., 27 (1-2): 66-73.
Helland R, Larsen R L, Ásgeirsson B. 2009. The 1.4 Å crystal structure of the large and cold-active Vibrio sp. alkaline phosphatase. Biochim. Biophys. Acta, 1794 (2): 297-308.
Henthorn P S, Raducha M, Fedde K N, Lafferty M A, Whyte M P. 1992. Different missense mutations at the tissuenonspecifi c alkaline phosphatase gene locus in autosomal recessively inherited forms of mild and severe hypophosphatasia. Proc. Natl. Acad. Sci. USA, 89 (20): 9 924-9 928.
Hernandez I, Hwang S J, Heath R T. 1996. Measurement of phosphomonoesterase activity with a radiolabelled glucose-6-phosphate. Role in the phosphorus requirement of phytoplankton and bacterioplankton in a temperate mesotrophic lake. Arch. Hydrobiol., 137 (2): 265-280.
Hogg P J. 2003. Disulfide bonds as switches for protein function. Trends Biochem. Sci., 28 (4): 210-214.
Hoppe H-G, Ullrich S. 1999. Profiles of ectoenzymes in the Indian Ocean: phenomena of phosphatase activity in the mesopelagic zone. Aqua t. Microb. Ecol., 19: 139-148.
Hoppe H-G. 2003. Phosphatase activity in the sea. Hydrobiologia, 493 (1-3): 187-200.
Hoylartes M F, Ding L, Narisawa S, van kerckhoven S, Millán J L. 2006. Mammalian alkaline phosphatase catalysis requires active site structure stabilization via the N-terminal amino acid microenvironment. Biochemistry, 45 (32): 9 756-9 766.
Hulett F M, Bookstein C, Jensen K. 1990. Evidence for two structural genes for alkaline phosphatase in Bacillus subtilis. J. Bacteriol., 172 (2): 735-740.
Ishibashi M, Yamashita S, Tokunaga M. 2005. Characterization of halophilic alkaline phosphatase from Halomonas sp. 593, a moderately halophilic bacterium. Biosci. Biotechnol. Biochem., 69 (6): 1 213-1 216.
Janeway C M L, Xu X, Murphy J E, Chaidaroglou A, Kantrowitz E R. 1993. Magnesium in the active site of Escherichia coli alkaline phosphatase is important for both structural stabilization and catalysis. Biochemistry, 32 (6): 1 601-1 609.
Kim E E, WyckoffH W. 1991. Reaction mechanism of alkaline phosphatase based on crystal structures. J. Mol. Biol., 218 (2): 449-464.
Kobori H, Sullivan C W, Shizuya H. 1984. Heat-labile alkaline phosphatase from Antarctic bacteria: rapid 5′ end-labeling of nucleic acids. Proc. Natl. Acad. Sci. USA, 81 (21): 6 691-6 695.
Koutsioulis D, Wang E, Tzanodaskalaki M, Nikiforaki D, Deli A, Feller G, Heikinheimo P, Bouriotis V. 2008. Directed evolution on the cold adapted properties of TAB5 alkaline phosphatase. Protein Eng. Des. Sel., 21 (5): 319-327.
Le Du M H, Millán J L. 2002. Structural evidence of functional divergence in human alkaline phosphatases. J. Biol. Chem., 277 (51): 49 808-49 814.
Le Du M H, Stigbrand T, Taussig M J, Ménez A, Stura E A. 2001. Crystal structure of alkaline phosphatase from human placenta at 1.8 Å resolution. Implication for a substrate specificity. J. Biol. Chem., 276 (12): 9 158-9 165.
Liang Z X, Tsigos I, Lee T, Bouriotis V, Resing K A, Ahn N G, Klinman J P. 2004. Evidence for increased local flexibility in psychrophilic alcohol dehydrogenase relative to its thermophilic homologue. Biochemistry, 43 (46): 14 676-14 683.
Llinas P, Stura E A, Ménez A, Kiss Z, Stigbrand T, Millán J L, Le Du M H. 2005. Structural studies of human placental alkaline phosphatase in complex with functional ligands. J. Mol. Biol., 350 (3): 441-451.
Lu Z S, Chen W T, Liu R, Hu X J, Ding Y. 2010. A novel method for high-level production of psychrophilic TAB5 alkaline phosphatase. Protein Expression Purif., 74 (2): 217-222.
Majumdar A, Ghatak A, Ghosh R K. 2005. Identification of the gene for the monomeric alkaline phosphatase of Vibrio cholerae serogroup O1 strain. Gene, 344: 251-258.
Mansfeld J, Vriend G, Dijkstra B W, Veltman O R, van den Burg B, Venema G, Ulbrich-Hofmann R, Eijsink V G H. 1997. Extreme stabilization of a thermolysin-like protease by an engineered disulfide bond. J. Biol. Chem., 272 (17): 11 152-11 156.
Martinez J, Smith D C, Steward G F, Azam F. 1996. Variability in ectohydrolytic enzyme activities of pelagic marine bacteria and its significance for substrate processing in the sea. Aquat. Microb. Ecol., 10: 223-230.
Matsumura M, Becktel W J, Levitt M, Matthews B W. 1989. Stabilization of phage T4 lysozyme by engineered disulfide bonds. Proc. Natl. Acad. Sci. USA, 86 (17): 6 562-6 566.
Mavromatis K, Tsigos I, Tzanodaskalaki M, Kokkinidis M, Bouriotis V. 2002. Exploring the role of a glycine cluster in cold adaptation of an alkaline phosphatase. Eur. J. Biochem., 269 (9): 2 330-2 335.
Mimura H, Nakanishi Y, Maeshima M. 2005. Disulfide-bond formation in the H+-pyrophosphatase of Streptomyces coelicolor and its implications for redox control and enzyme structure. FEBS Lett., 579 (17): 3 625-3 631.
Mornet E. 2000. Hypophosphatasia: the mutations in the tissue-nonspecific alkaline phosphatase gene. Hum. Mutat., 15 (4): 309-315.
Moss D W. 1992. Perspectives in alkaline phosphatase research. Clin. Chem., 38 (12): 2 486-2 492.
Muller B H, Lamoure C, Le Du M H, Cattolico L, Lajeunesse E, Lemaître F, Pearson A, Ducancel F, Ménez A, Boulain J C. 2001. Improving Escherichia coli alkaline phosphatase efficacy by additional mutations inside and outside the catalytic pocket. ChemBioChem, 2 (7-8): 517-523.
Murphy J E, Kantrowitz E R. 1994. Why are mammalian alkaline phosphatases much more active than bacterial alkaline phosphatases? Mol. Microbiol., 12 (3): 351-357.
Nilsen I W, Øverbø K, Olsen R L. 2001. Thermolabile alkaline phosphatase from Northern shrimp (Pandalus borealis): protein and cDNA sequence analyses. Comp. Biochem. Physiol. B, 129 (4): 853-861.
Olsen R L, Øverbø K, Myrnes B. 1991. Alkaline phophatase from the hepatopancreas of shrimp (Pandalus borealis): a dimeric enzyme with catalytically active subunits. Comp. Biochem. Physiol. B: Comp. Biochem., 99 (4): 755-761.
Orimo H. 2010. The mechanism of mineralization and the role of alkaline phosphatase in health and disease. J. Nippon Med. Sch., 77 (1): 4-12.
Park H J, Kim D, Kim I H, Lee C-E, Kim I-C, Kim J-Y, Kim S J, Lee H K, Yim J H. 2009. Characteristics of coldadaptive endochitinase from Antarctic bacterium Sanguibacter antarcticus KOPRI 21702. Enzyme Microb. Technol., 45 (5): 391-396.
Plisova E Y, Balabanova L A, Ivanova E P, Kozhemyako V B, Mikhailov V V, Agafonova E V, Rasskazov V A. 2005. A highly active alkaline phosphatase from the marine bacterium Cobetia. Mar. Biotech., 7 (3): 173-178.
Rina M, Pozidis C, Mavromatis K, Tzanodaskalaki M, Kokkinidis M, Bouriotis V. 2000. Alkaline phosphatase from the Antarctic strain TAB5. Properties and psychrophilic adaptations. Eur. J. Biochem., 267 (4): 1 230-1 238.
Ruan C C, Samols S B, Fuller C W. 1990. Comments 17, (No. 2). United States Biochemical Corporation. Cleveland, OH. Schrøder Leiros H K, Willassen N P, Smalås A O. 2000. Structural comparison of psychrophilic and mesophilic trypsins. Elucidating the molecular basis of coldadaptation. Eur. J. Biochem., 267 (4): 1 039-1 049.
Shimizu-Ibuka A, Matsuzawa H, Sakai H. 2006. Effect of disulfide-bond introduction on the activity and stability of the extended-spectrum class a β-lactamase Toho-1. Biochim. Biophys. Acta, 1764 (8): 1 349-1 355.
Siddiqui K S, Cavicchioli R. 2006. Cold-adapted enzymes. Annu. Rev. Biochem., 75: 403-433.
Siddiqui K S, Poljak A, Guilhaus M, Feller G, D'Amico S, Gerday C, Cavicchioli R. 2005. Role of disulfide bridges in the activity and stability of a cold-active α-amylase. J. Bacteriol., 187 (17): 6 206-6 212.
Smalås A O, Schrøder Leiros H K, Os V, Willassen N P. 2000. Cold adapted enzymes. Biotechnol. Ann. Rev., 6: 1-57.
Sola-Landa A, Moura R S, Martin J F. 2003. The twocomponent PhoR-PhoP system controls both primary metabolism and secondary metabolite biosynthesis in Streptomyces lividans. Proc. Natl. Acad. Sci. USA, 100 (10): 6 133-6 138.
Stec B, Holtz K M, Kantrowitz E R. 2000. A revised mechanism for the alkaline phosphatase reaction involving three metal ions. J. Mol. Biol., 299 (5): 1 303-1 311.
Suzuki Y, Mizutani Y, Tsuji T, Ohtani N, Takano K, Haruki M, Morikawa M, Kanaya S. 2005. Gene cloning, overproduction, and characterization of thermolabile alkaline phosphatase from a psychrotrophic bacterium. Biosci. Biotechnol. Biochem., 69 (2): 364-373.
Tibbitts T T, Murphy J E, Kantrowitz E R. 1996. Kinetic and structural consequences of replacing the aspartate bridge by asparagine in the catalytic metal triad of Escherichia coli alkaline phosphatase. J. Mol. Biol., 257 (3): 700-715.
Trentham D R, Gutfreund H. 1968. The kinetics of the reaction of nitrophenyl phosphates with alkaline phosphatase from Escherichia coli. Biochem. J., 106 (2): 455-460.
Tsigos I, Mavromatis K, Tzanodaskalaki M, Pozidis C, Kokkinidis M, Bouriotis V. 2001. Engineering the properties of a cold active enzyme through rational redesign of the active site. Eur. J. Biochem., 268 (19): 5 074-5 080.
Tyler-Cross R, Roberts C H, Chlebowski J F. 1989. Proteolytic modification of Escherichia coli alkaline phosphatase. J. Biol. Chem., 264 (8): 4 523-4 528.
Vershinina O A, Znamenskaya L V. 2002. The pho regulons of bacteria. Microbiology, 71 (5): 497-511.
von Tigerstrom R G. 1984. Production of two phosphatases by Lysobacter enzymogenes and purification and characterization of the extracellular enzyme. Appl. Environ. Microbiol., 47 (4): 693-698.
Wang E, Koutsioulis D, Leiros H-K S, Andersen O A, Bouriotis V, Hough E, Heikinheimo P. 2007. Crystal structure of alkaline phosphatase from the Antarctic bacterium TAB5. J. Mol. Biol., 366 (4): 1 318-1 331.
Wang J, Stieglitz K A, Kantrowitz E R. 2005. Metal specificity is correlated with two crucial active site residues in Escherichia coli alkaline phosphatase. Biochemistry, 44 (23): 8 378-8 386.
Wanner B L, Chang B D. 1987. The pho BR operon in Escherichia coli K-12. J. Bacteriol., 169 (12): 5 569-5 574.
Whitton B A, Al-Shehri A M, Ellwood N T W, Turner B L. 2005. Ecological aspects of phosphatase activity in cyanobacteria, eukaryotic algae and bryophytes. In: Turner B L, Frossard E, Baldwin D S eds. Organic Phosphorus in the Environment. Commonwealth Agricultural Bureau, Wallingford. p.205-241.
Wojciechowski C L, Cardia J P, Kantrowitz E R. 2002. Alkaline phosphatase from the hyperthermophilic bacterium T. maritima requires cobalt for activity. Protein Science, 11 (4): 903-911.
Wojciechowski C L, Kantrowitz E R. 2002. Altering of the metal specificity of Escherichia coli alkaline phosphatase. J. Biol. Chem., 277 (52): 50 476-50 481.
Woolkalis M J, Baumann P. 1981. Evolution of alkaline phosphatase in marine species of Vibrio. J. Bacteriol., 147 (1): 36-45.
Xu X, Kantrowitz E R. 1991. A water-mediated salt link in the catalytic site of Escherichia coli alkaline phosphatase may influence activity. Biochemistry, 30 (31): 7 789-7 796.
Zalatan J G, Fenn T D, Brunger A T, Herschlag D. 2006. Structural and functional comparisons of nucleotide pyrophosphatase/phosphodiesterase and alkaline phosphatase: implications for mechanism and evolution. Biochemistry, 45 (32): 9 788-9 803.
Zalatan J G, Fenn T D, Herschlag D. 2008. Comparative enzymology in the alkaline phosphatase superfamily to determine the catalytic role of an active-site metal ion. J. Mol. Biol., 384 (5): 1 174-1 189.
Copyright © Haiyang Xuebao