Cite this paper:
SUN Chengjun, JIANG Fenghua, GAO Wei, LI Xiaoyun, YU Yanzhen, YIN Xiaofei, WANG Yong, DING Haibing. Scanning electron microscopy coupled with energydispersive X-ray spectrometry for quick detection of sulfuroxidizing bacteria in environmental water samples[J]. Journal of Oceanology and Limnology, 2017, 35(1): 185-191

Scanning electron microscopy coupled with energydispersive X-ray spectrometry for quick detection of sulfuroxidizing bacteria in environmental water samples

SUN Chengjun1,2, JIANG Fenghua1, GAO Wei1, LI Xiaoyun1,2, YU Yanzhen1, YIN Xiaofei1, WANG Yong3, DING Haibing4,5
1 Marine Ecology Center, First Institute of Oceanography, State Oceanic Administration, Qingdao 266061, China;
2 College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China;
3 Qingdao Hao Ao Environmental Engineering Ltd., Qingdao 266100, China;
4 Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100, China;
5 Qingdao Collaborative Innovation Center of Marine Science and Technology, Ocean University of China, Qingdao 266100, China
Abstract:
Detection of sulfur-oxidizing bacteria has largely been dependent on targeted gene sequencing technology or traditional cell cultivation, which usually takes from days to months to carry out. This clearly does not meet the requirements of analysis for time-sensitive samples and/or complicated environmental samples. Since energy-dispersive X-ray spectrometry (EDS) can be used to simultaneously detect multiple elements in a sample, including sulfur, with minimal sample treatment, this technology was applied to detect sulfur-oxidizing bacteria using their high sulfur content within the cell. This article describes the application of scanning electron microscopy imaging coupled with EDS mapping for quick detection of sulfur oxidizers in contaminated environmental water samples, with minimal sample handling. Scanning electron microscopy imaging revealed the existence of dense granules within the bacterial cells, while EDS identified large amounts of sulfur within them. EDS mapping localized the sulfur to these granules. Subsequent 16S rRNA gene sequencing showed that the bacteria detected in our samples belonged to the genus Chromatium, which are sulfur oxidizers. Thus, EDS mapping made it possible to identify sulfur oxidizers in environmental samples based on localized sulfur within their cells, within a short time (within 24 h of sampling). This technique has wide ranging applications for detection of sulfur bacteria in environmental water samples.
Key words:    sulfur bacteria|energy-dispersive X-ray spectrometry|scanning electron microscopy|bacteria detection|environmental water samples|16S rRNA sequencing   
Received: 2015-06-22   Revised: 2015-08-18
Tools
PDF (1037 KB) Free
Print this page
Add to favorites
Email this article to others
Authors
Articles by SUN Chengjun
Articles by JIANG Fenghua
Articles by GAO Wei
Articles by LI Xiaoyun
Articles by YU Yanzhen
Articles by YIN Xiaofei
Articles by WANG Yong
Articles by DING Haibing
References:
Amann R I, Ludwig W, Schleifer K H. 1995. Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol. Rev., 59(1): 143-169.
Eder S H K, Gigler A M, Hanzlik M, Winklhofer M. 2014.Sub-micrometer-scale mapping of magnetite crystals and sulfur globules in magnetotactic bacteria using confocal raman micro-spectrometry. PLoS One, 9(9): e107356, http://dx.dox.org./10.1371/journal.pone.0107356.
Fischer C, Wiggli M, Schanz F, Hanselmann K W, Bachofen R. 1996. Light environment and synthesis of bacteriochlorophyll by populations of Chromatium okenii under natural environmental conditions. FEMS Microbiol.Ecol., 21(1): 1-9.
Franz B, Lichtenberg H, Hormes J, Modrow H, Dahl C, Prange A. 2007. Utilization of solid ‘elemental’ sulfur by the phototrophic purple sulfur bacterium Allochromatium vinosum: a sulfur K-edge X-ray absorption spectroscopy study. Microbiology, 153(4): 1 268-1 274.
Gervais F. 1997. Diel vertical migration of Cryptomonas and Chromatium in the deep chlorophyll maximum of a eutrophic lake. J. Plankton Res., 19(5): 533-550.
Hageage Jr G J, Gherna R L. 1971. Surface structure of Chromatium okenii and Chromatium weissei. J. Bacteriol., 106(2): 687-690.
Jogler C, Niebler M, Lin W, Kube M, Wanner G, Kolinko S, Stief P, Beck A J, de Beer D, Petersen N, Pan Y, Amann R, Reinhardt R, Schüler D. 2010. Cultivation-independent characterization of ‘Candidatus Magnetobacterium bavaricum’ via ultrastructural, geochemical, ecological and metagenomic methods. Environ. Microbiol., 12(9):2 466-2 478, http://dx.dox.org./10.1111/j.1462-2920.2010.02220.x.
Keim C N, Solórzano G, Farina M, Lins U. 2005. Intracellular inclusions of uncultured magnetotactic bacteria. Int.Microbiol., 8(2): 111-117.
Maki J S. 2013. Bacterial intracellular sulfur globules: structure and function. J. Mol. Microbiol. Biotechnol., 23(4-5):270-280.
Marshall K T, Morris R M. 2013. Isolation of an aerobic sulfur oxidizer from the SUP05/Arctic96BD-19 clade. ISME J., 7(2): 452-455.
Mori Y, Purdy K J, Oakley B B, Kondo R. 2010. Comprehensive detection of phototrophic sulfur bacteria using PCR primers that target reverse dissimilatory sulfite reductase gene. Microbes Environ., 25(3): 190-196.
Oren A, Mana L, Jehlička J. 2015. Probing single cells of purple sulfur bacteria with Raman spectroscopy:carotenoids and elemental sulfur. FEMS Microbiol. Lett., 362(6), http://dx.doi.org/10.1093/femsle/fnv021.
Pfennig N, Trüper H G. 1992. The family Chromatiaceae. In:Balows A, Trüper H G, Dworkin M, Harder W, Schleifer K H eds. The Prokaryotes, A Handbook on the Biology of Bacteria: Ecophysiology, Isolation, Identification, Applications. 2nd edn. Springer, New York. p.3 200-3 221.
Pjevac P, Korlević M, Berg J S, Bura-Nakić E, Ciglenečki I, Amann R, Orlić S. 2015. Community shift from phototrophic to chemotrophic sulfide oxidation following anoxic holomixis in a stratified seawater lake. Appl.Environ. Microbiol., 81(1): 298-308.
Prange A, Chauvistré R, Modrow H, Hormes J, Trüper H G, Dahl C. 2002. Quantitative speciation of sulfur in bacterial sulfur globules: X-ray absorption spectroscopy reveals at least three different species of sulfur. Microbiology, 148(1): 267-276.
Rabus R, Hansen T A, Widdel F. 2013. Dissimilatory sulfateand sulfur-reducing prokaryotes. In: Rosenbrug E, DeLong E F, Lory S, Stackebrandt E, Thompson F eds.Prokaryotes Prokaryotic Physiology and Biochemistry.Springer-Verlag, Berlin Heidelberg. p.309-404.
Segura-Noguera M, Blasco D, Fortuño J M. 2012. An Improved energy-dispersive X-ray microanalysis method for analyzing simultaneously carbon, nitrogen, oxygen, phosphorus, sulfur, and other cation and anion concentrations in single natural marine microplankton cells. Limnol. Oceanogr. Methods, 10(9): 666-680.
Zhao J Y, Fu Y N, Zhao C G, Yang S P, Qu Y B, Jiao N Z. 2011.Identification and characterization of a purple sulfur bacterium from mangrove with rhodopin as predominant carotenoid. Acta Microbiological Sinica, 51(10): 1 318-1 325. (in Chinese with English abstract)
Zhong F, Wu J, Dai Y R, Yang L H, Zhang Z H, Cheng S P, Zhang Q. 2015. Bacterial community analysis by PCRDGGE and 454-pyrosequencing of horizontal subsurface flow constructed wetlands with front aeration. Appl.Microbiol. Biotechnol., 99(3): 1 499-1 512.
Copyright © Haiyang Xuebao