Cite this paper:
YANG Yang, SUN Xiaoxia, ZHAO Yongfang. Effects of Lugol's iodine solution and formalin on cell volume of three bloom-forming dinoflagellates[J]. Journal of Oceanology and Limnology, 2017, 35(4): 858-866

Effects of Lugol's iodine solution and formalin on cell volume of three bloom-forming dinoflagellates

YANG Yang1,2, SUN Xiaoxia1,3, ZHAO Yongfang1
1 Jiaozhou Bay Marine Ecosystem Research Station, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China;
2 University of Chinese Academy of Sciences, Beijing 100049, China;
3 Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China
Abstract:
Fixatives are traditionally used in marine ecosystem research. The bias introduced by fixatives on the dimensions of plankton cells may lead to an overestimation or underestimation of the carbon biomass. To determine the impact of traditional fixatives on dinoflagellates during short-and long-term fixation, we analyzed the degree of change in three bloom-forming dinoflagellates (Prorocentrum micans, Scrippsiella trochoidea and Noctiluca scintillans) brought about by Lugol's iodine solution (hereafter Lugol's) and formalin. The fixation effects were species-specific. P. micans cell volume showed no significant change following long-term preservation, and S. trochoidea swelled by approximately 8.06% in Lugol's and by 20.97% in formalin as a percentage of the live cell volume, respectively. N. scintillans shrank significantly in both fixatives. The volume change due to formalin in N. scintillans was not concentration-dependent, whereas the volume shrinkage of N. scintillans cells fixed with Lugol's at a concentration of 2% was nearly six-fold that in cells fixed with Lugol's at a concentration of 0.6%-0.8%. To better estimate the volume of N. scintillans fixed in formalin at a concentration of 5%, we suggest that the conversion relationship was as follows:volume of live cell=volume of intact fixed cell/0.61. Apart from size change, damage induced by fixatives on N. scintillans was obvious. Lugol's is not a suitable fixative for N. scintillans due to high frequency of broken cells. Accurate carbon biomass estimate of N. scintillans should be performed on live samples. These findings help to improve the estimate of phytoplankton cell volume and carbon biomass in marine ecosystem.
Key words:    cell volume|formalin|Lugol's|Noctiluca scintillans   
Received: 2015-12-30   Revised: 2016-03-03
Tools
PDF (345 KB) Free
Print this page
Add to favorites
Email this article to others
Authors
Articles by YANG Yang
Articles by SUN Xiaoxia
Articles by ZHAO Yongfang
References:
Álvarez E, López-Urrutia Á, Nogueira E, Fraga S. 2011. How to effectively sample the plankton size spectrum? A case study using FlowCAM. Journal of Plankton Research, 33(7):1 119-1 133.
Børsheim K Y, Bratbak G. 1987. Cell volume to cell carbon conversion factors for a bacterivorous Monas sp. enriched from seawater. Marine Ecology Progress Series, 36(2):171-175.
Chaput O, Carrias J F. 2002. Effects of commonly used fixatives on size parameters of freshwater planktonic protists. Archiv für Hydrobiologie, 155(3):517-526.
Choi J W, Stoecker D K. 1989. Effects of fixation on cell volume of marine planktonic protozoa. Applied and Environmental Microbiology, 55(7):1 761-1 765.
Coyle K O, Pinchuk A I. 2002. Climate-related differences in zooplankton density and growth on the inner shelf of the southeastern Bering Sea. Progress in Oceanography, 55(1-2):177-194.
Dodge J D. 1975. The Prorocentrales (Dinophyceae). II. Revision of the taxonomy within the genus Prorocentrum. Botanical Journal of the Linnean Society, 71(2):103-125.
Eppley R W, Reid F M H, Strickland J D H. 1970. Estimates of phytoplankton crop size, growth rate and primary production. In:Strickland J D H ed. The Ecology of the Plankton off La Jolla, California, in the Period April through September, 1967. University of California Press, Berkeley, USA. p.33-42.
Graham D M, Sprules W G. 1992. Size and species selection of zooplankton by larval and juvenile walleye (Stizostedion vitreum vitreum) in Oneida Lake, New York. Canadian Journal of Zoology, 70(10):2 059-2 067.
Hallegraeff G M. 1992. Harmful algal blooms in the Australian region. Marine Pollution Bulletin, 25(5-8):186-190.
Horner R A. 2002. A Taxonomic Guide To Some Common Marine Phytoplankton. Biopress Limited, Dorset Press, Dorchester, UK. 200p.
Huang C, Qi Y. 1997. The abundance cycle and influence factors on red tide phenomena of Noctiluca scintillans(Dinophyceae) in Dapeng Bay, the South China Sea. Journal of Plankton Research, 19(3):303-318.
Ignatiades L, Gotsis-Skretas O. 2010. A review on toxic and harmful algae in Greek coastal waters (E. Mediterranean Sea). Toxins, 2(5):1 019-1 037.
Jakobsen H H, Carstensen J, Harrison P J, Zingone A. 2015. Estimating time series phytoplankton carbon biomass:inter-lab comparison of species identification and comparison of volume-to-carbon scaling ratios. Estuarine, Coastal and Shelf Science, 162:143-150.
Jakobsen H H, Carstensen J. 2011. FlowCAM:sizing cells and understanding the impact of size distributions on biovolume of planktonic community structure. Aquatic Microbial Ecology, 65(1):75-87.
Jerome C A, Montagnes D J S, Taylor F J R. 1993. The effect of the quantitative protargol stain and Lugol's and bouin's fixatives on cell size:a more accurate estimate of ciliate species biomass. The Journal of Eukaryotic Microbiology, 40(3):254-259.
Karayanni H, Christaki U, Van Wambeke F, Dalby A P. 2004. Evaluation of double formalin-Lugol's fixation in assessing number and biomass of ciliates:an example of estimations at mesoscale in NE Atlantic. Journal of Microbiological Methods, 56(3):349-358.
Lee C, Lim W. 2006. Variation of harmful algal blooms in Masan-Chinhae Bay. Science Asia, 32(S1):51-56.
Long C, Chen B, He B J, Gao C H. 2013. Morphological and phylogenetic analysis of Prorocentrum micans isolated from the Beibu Gulf. Journal of Tropical and Subtropical Botany, 21(4):332-338. (in Chinese with English abstract)
Majaneva M, Autio R, Huttunen M, Kuosa H, Kuparinen J. 2009. Phytoplankton monitoring:the effect of sampling methods used during different stratification and bloom conditions in the Baltic Sea. Boreal Environment Research, 14:313-322.
Menden-Deuer S, Lessard E J, Satterberg J. 2001. Effect of preservation on dinoflagellate and diatom cell volume and consequences for carbon biomass predictions. Marine Ecology Progress Series, 222:41-50.
Menden-Deuer S, Lessard E J. 2000. Carbon to volume relationships for dinoflagellates, diatoms, and other protist plankton. Limnology and Oceanography, 45(3):569-579.
Montagnes D J S, Berges J A, Harrison P J, Taylor F J R. 1994. Estimating carbon, nitrogen, protein, and chlorophyll a from volume in marine phytoplankton. Limnology and Oceanography, 39(5):1 044-1 060.
Mukherjee A, Das S, Bhattacharya T, De M, Maiti T, Kumar De T. 2014. Optimization of phytoplankton preservative concentrations to reduce damage during long-term storage. Biopreservation and Biobanking, 12(2):139-147.
Mullin M M, Sloan P R, Eppley R W. 1966. Relationship between carbon content, cell volume, and area in phytoplankton. Limnology and Oceanography, 11(2):307-311.
Naik R K, Hegde S, Anil A C. 2011. Dinoflagellate community structure from the stratified environment of the Bay of Bengal, with special emphasis on harmful algal bloom species. Environmental Monitoring and Assessment, 182(1-4):15-30.
Ohman M D, Snyder R A. 1991. Growth kinetics of the omnivorous oligotrich ciliate Strombidium sp. Limnology and Oceanography, 36(5):922-935.
Palardy J E, Grottoli A G, Matthews K A. 2006. Effect of naturally changing zooplankton concentrations on feeding rates of two coral species in the Eastern Pacific. Journal of Experimental Marine Biology and Ecology, 331(1):99-107.
Pybus C. 1990. Blooms of Prorocentrum micans (Dinophyta) in the Galway Bay area. Journal of the Marine Biological Association of the United Kingdom, 70(4):697-705.
Sieracki C K, Sieracki M E, Yentsch C S. 1998. An imagingin-flow system for automated analysis of marine microplankton. Marine Ecology Progress Series, 168(1):285-296.
Stephen V C, Hockey P A R. 2007. Evidence for an increasing incidence and severity of Harmful Algal Blooms in the southern Benguela region. South African Journal of Science, 103(5-6):223-231.
Strathmann R R. 1967. Estimating the organic carbon content of phytoplankton from cell volume or plasma volume. Limnology and Oceanography, 12(3):411-418.
Tada K, Pithakpol S, Yano R, Montani S. 2000. Carbon and nitrogen content of Noctiluca scintillans in the Seto Inland Sea, Japan. Journal of Plankton Research, 22(6):1 203-1 211.
Throndsen J. 1978. Preservation and storage. In:Sournia A ed. Phytoplankton Manual. UNESCO, Paris, France. p.69-74.
Verity P G, Robertson C Y, Tronzo C R, Andrews M G, Nelson J R, Sieracki M E. 1992. Relationships between cell volume and the carbon and nitrogen content of marine photosynthetic nanoplankton. Limnology and Oceanography, 37(7):1 434-1 446.
Yang Y, Sun X X, Zhu M L, Luo X, Zheng S. 2016. Estimating the carbon biomass of marine net phytoplankton from abundance based on samples from China seas. Marine and Freshwater Research, http://dx.doi.org/10.1071/MF15298.
Zarauz L, Irigoien X. 2008. Effects of Lugol's fixation on the size structure of natural nano-microplankton samples, analyzed by means of an automatic counting method. Journal of Plankton Research, 30(11):1 297-1 303.
Zinabu G M, Bott T L. 2000. The effects of formalin and Lugol's iodine solution on protozoal cell volume. Limnologica-Ecology and Management of Inland Waters, 30(1):59-63.
Copyright © Haiyang Xuebao