Cite this paper:
LIAO Mengxiang, ZHENG Jiao, WANG Zhiyong, WANG Yilei, ZHANG Jing, CAI Mingyi. Molecular cytogenetic of the Amoy croaker, Argyrosomus amoyensis (Teleostei, Sciaenidae)[J]. Journal of Oceanology and Limnology, 2018, 36(3): 842-849

Molecular cytogenetic of the Amoy croaker, Argyrosomus amoyensis (Teleostei, Sciaenidae)

LIAO Mengxiang, ZHENG Jiao, WANG Zhiyong, WANG Yilei, ZHANG Jing, CAI Mingyi
Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Fisheries College, Jimei University, Xiamen 361021, China
Abstract:
The family Sciaenidae is remarkable for its species richness and economic importance. However, the cytogenetic data available in this fish group are still limited, especially those obtained using fluorescence in situ hybridization (FISH). In the present study, the chromosome characteristics of a sciaenid species, Argyrosomus amoyensis, were examined with several cytogenetic methods, including dual-FISH with 18S and 5S rDNA probes, and a self-genomic in situ hybridization procedure (Self-GISH). The karyotype of A. amoyensis comprised 2n=48 acrocentric chromosomes. A single pair of nucleolar organizer regions (NORs) was located at the proximal position of chromosome 1, which was positive for silver nitrate impregnation (AgNO3) staining and denaturation-propidium iodide (DPI) staining but negative for Giemsa staining and 4',6-diamidino-2-phenylindole (DAPI) staining, and was confirmed by FISH with 18S rDNA probes. The 5S rDNA sites were located at the centromeric region of chromosome 3. Telomeric FISH signals were detected at all chromosome ends with different intensities, but internal telomeric sequences (ITSs) were not found. Self-GISH resulted in strong signals distributed at the centromeric regions of all chromosomes. C-banding revealed not only centromeric heterochromatin, but also heterochromatin that located on NORs, in interstitial and distal telomeric regions of specific chromosomes. These results suggest that the karyotype of Amoy croaker was relatively conserved and primitive. By comparison with the reported cytogenetic data of other sciaenids, it can be deduced that although the karyotypic macrostructure and chromosomal localization of 18S rDNA are conserved, the distribution of 5S rDNA varies dynamically among sciaenid species. Thus, the 5S rDNA sites may have different evolutionary dynamics in relation to other chromosomal regions, and have the potential to be effective cytotaxonomic markers in Sciaenidae.
Key words:    Argyrosomus amoyensis|fluorescence in situ hybridization|genomic DNA|rDNA|telomere   
Received: 2016-10-29   Revised:
Tools
PDF (673 KB) Free
Print this page
Add to favorites
Email this article to others
Authors
Articles by LIAO Mengxiang
Articles by ZHENG Jiao
Articles by WANG Zhiyong
Articles by WANG Yilei
Articles by ZHANG Jing
Articles by CAI Mingyi
References:
Accioly I V, Molina W F. 2008. Cytogenetic studies in Brazilian marine Sciaenidae and Sparidae fishes (Perciformes).Genet. Mol. Res., 7(2):358-370, https://doi.org/10.4238/vol7-2gmr427.
Aguilar C T, Galetti Jr P M. 1997. Chromosomal studies in South Atlantic serranids (Pisces, Perciformes). Cytobios,89:105-114.
Arai R. 2011. Fish Karyotypes:A Check List. Springer, Tokyo, Japan. p.174-175.
Brum M J I, Galetti Jr P M. 1997. Teleostei ground plan karyotype. J. Comp. Biol., 2:91-102.
Cai M Y, Liu X D, Chen Z Y, Cai B B, Ke C H. 2013. Characterization of Pacific abalone (Haliotis discus hannai) karyotype by C-banding and fluorescence in situ hybridization with rDNA. J. Fish. China, 37(7):1 002-1 008, https://doi.org/10.3724/SP.J.1231.2013.38481. (in Chinese with English abstract)
Calado L L, Bertollo L A C, Cioffi M B, Costa G W, Jacobina U P, Molina W F. 2014. Evolutionary dynamics of rDNA genes on chromosomes of the Eucinostomus fishes:cytotaxonomic and karyoevolutive implications. Genet.Mol. Res., 13(4):9 951-9 959, https://doi.org/10.4238/2014.November.27.24.
Canela A, Vera E, Klatt P, Blasco M A. 2007. High-throughput telomere length quantification by fish and its application to human population studies. Proc. Natl. Acad. Sci. USA., 104(13):5 300-5 305, https://doi.org/10.1073/pnas.0609367104.
Cao K, Zheng J, Wang Z Y, Liu X D, Cai M Y. 2015. Genome size and physical length of chromosomes in Nibea albiflora. South China Fish. Sci., 11(4):65-70, https://doi.org/10.3969/j.issn.2095-0780.2015.04.010. (in Chinese with English abstract)
Chao L N, Musick J A. 1977. Life history, feeding habits, and functional morphology of juvenile sciaenid fishes in the York River estuary, Virginia. Fish. Bull., 75(4):657-702.
Coen E S, Dover G A. 1983. Unequal exchanges and the coevolution of X and Y rDNA arrays in Drosophila melanogaster. Cell, 33(3):849-855, https://doi.org/10.1016/0092-8674(83)90027-2.
Da Silva M, Matoso D A, Vicari M R, de Almeida M C, Margarido V P, Artoni R F. 2011. Physical mapping of 5S rDNA in two species of knifefishes:Gymnotus pantanal and Gymnotus paraguensis (gymnotiformes). Cytogenet.Genome Res., 134(4):303-307, https://doi.org/10.1159/000328998.
de Mello Affonso P R A, Galetti Jr P M. 2005. Chromosomal diversification of reef fishes from genus Centropyge(perciformes, pomacanthidae). Genetica, 123(3):227-233, https://doi.org/10.1007/s10709-004-3214-x.
Drouin G, de Sá M M. 1995. The concerted evolution of 5S ribosomal genes linked to the repeat units of other Multigene Families. Mol. Biol. Evol., 12(3):481-493, https://doi.org/10.1093/oxfordjournals.molbev.a040223.
Feldberg E, Porto J I R, dos Santos E B P, Valentim F C S. 1999. Cytogenetic studies of two freshwater sciaenids of the genus Plagioscion (Perciformes, sciaenidae) from the central Amazon. Genet. Mol. Biol., 22(3):351-356, https://doi.org/10.1590/S1415-47571999000300011.
Fujiwara A, Abe S, Yamaha E, Yamazaki F, Yoshida M C. 1997. Uniparental chromosome elimination in the early embryogenesis of the inviable salmonid hybrids between masu salmon female and rainbow trout male.Chromosoma, 106(1):44-52, https://doi.org/10.1007/s004120050223.
Galetti Jr P M, Aguilar C T, Molina W F. 2000. An Overview of Marine Fish Cytogenetics. Springer, Netherlands. p.55-62, https://doi.org/10.1007/978-94-017-2184-4_6.
Gomes V, Vazzoler A E A D M, Phan V N. 1983a. Estudos cariotípicos de peixes da família Sciaenidae (Teleostei, Perciformes) da região de Cananéia, SP, Brasil. 1. Sobre o cariótipo de Micropogonias furnieri (Desmarest, 1823).Bol. Inst. Oceanogr., 32(2):137-142.
Gomes V, Vazzoler A E A D M, Phan V N. 1983b. Estudos cariotípicos de peixes da família Sciaenidae (Teleostei, Perciformes) da região de Cananéia, SP, Brasil:2. Sobre o cariótipo de Menticirrhus americanus (Linnaeus, 1758).Bol. Inst. Oceanogr., 32(2):187-191.
Gornung E. 2013. Twenty years of physical mapping of major ribosomal RNA genes across the teleosts:a review of research. Cytogenet. Genome Res., 141:90-102, https://doi.org/10.1159/000354832.
Howell W M, Black D A. 1980. Controlled silver-staining of nucleolus organizer regions with protective colloidal developer:a 1-step method. Experientia, 36(8):1 014-1 015, https://doi.org/10.1007/BF01953855.
Ijdo J W, Wells R A, Baldini A, Reeders S T. 1991. Improved telomere detection using a telomere repeat probe(TTAGGG)n generated by PCR. Nucleic Acids Res., 19(17):4780, https://doi.org/10.1093/nar/19.17.4780.
Jian L J, Yang Y K, Liu X D, Chen Q K, Wang Z Y. 2013. The cross breeding and genetic analysis of hybrids of Larimichthys crocea (♀) and Nibea miichthioides (♂). J.Fish. China, 37(6):801-808, https://doi.org/10.3724/SP.J.1231.2013.38438. (in Chinese with English abstract)
Junior P M G, Molina W F, Affonso P R A M, Aguilar C T. 2006. Assessing genetic diversity of Brazilian reef fishes by chromosomal and DNA markers. Genetica, 126(1-2):161-177, https://doi.org/10.1007/s10709-005-1446-z.
Levan A, Fredga K, Sandberg A A. 1964. Nomenclature for centromeric position on chromosomes. Hereditas, 52(2):201-220, https://doi.org/10.1111/j.1601-5223.1964.tb01953.x.
Longhurst A R, Pauly D. 1987. Ecology of Tropical Oceans.Academic Press Inc., San Diego. p.407.
Markova M, Vyskot B. 2009. New horizons of genomic in situ hybridization. Cytogenet. Genome Res., 126(4):368-375, https://doi.org/10.1159/000275796.
Martins C, Galetti Jr P M. 1999. Chromosomal localization of 5S rDNA genes in Leporinus fish (Anostomidae, Characiformes). Chromosome Res., 7(5):363-367, https://doi.org/10.1023/A:1009216030316.
Meng Q W. 1996. Systematics of Fishes. China Agriculture Press, Beijing, China. p.721-722. (in Chinese).
Nelson J S, Grande T C, Wilson M V H. 2016. Fishes of the World. 5th edn. John Wiley and Sons Inc., New York.p.498.
Ocalewicz K. 2013. Telomeres in fishes. Cytogenet. Genome Res., 141(2-3):114-125, https://doi.org/10.1159/000354278.
Ojima Y, Kikuno T. 1987. Karyotypes of a Gobiesociform and two Perciform fishes (Teleostei). Proc. Japan Acad. Ser.B, 63(6):201-204, https://doi.org/10.2183/pjab.63.201.
Pereira A, Bedó G, Pereira J. 1988. Estudio cromosomico preliminar de Micropogonias furnieri Desmarest, 1823(Perciformes, Sciaenidae). Bol. Soc. Zool. Uruguay (2ª epoca), 4:23-26.
Rab P, Reed K M, de León A P, Phillips R B. 1996. A new method for detecting nucleolus organizer regions in fish chromosomes using denaturation and propidium iodide staining. Biotech. Histochem., 71(3):157-162, https://doi.org/10.3109/10520299609117153.
Reggi R, Périco E, Suninsky M, Camillo J C A. 1986. Estudos citogenéticos em papa-terra, Menticirrhus litoralis(Perciformes, Serranidae). In:Simpósio de Citogenética Evolutiva e Aplicada de Peixes Neotropicais. Botucatu, UNESP. p.57.
Ruiz-Herrera A, Nergadze S G, Santagostino M, Giulotto E. 2008. Telomeric repeats far from the ends:mechanisms of origin and role in evolution. Cytogenet. Genome Res., 122(3-4):219-228, https://dx.doi.org/10.1159/000167807.
Sasaki K. 1996. Sciaenid fishes of the Indian Ocean (Teleostei, Perciformes). Mem. Fac. Sci. Kochi. Univ. Ser. D, 16-17:83-96.
Sasaki K. 2001. Sciaenidae. Croakers (drums). In:Carpenter K E ed. FAO Species Identification Guide for Fishery Purposes. The Living Marine Resources of the Western Central Pacific. Vol. 5. Bony Fishes Part 3 (Menidae to Pomacentridae). Rome:FAO. p.2 791-3 380.
Scacchetti P C, Pansonato-Alves J C, Utsunomia R, Oliveira C, Foresti F. 2011. Karyotypic diversity in four species of the genus Gymnotus Linnaeus, 1758 (Teleostei, Gymnotiformes, Gymnotidae):physical mapping of ribosomal genes and telomeric sequences. Comp Cytogen., 5(3):223-235, https://doi.org/10.3897/CompCytogen.v5i3.1375.
She C W, Liu J Y, Diao Y, Hu Z L, Song Y C. 2007. The distribution of repetitive DNAs along chromosomes in plants revealed by self-genomic in situ hybridization. J.Genet. Genom., 34(5):437-448, https://doi.org/10.1016/S1673-8527(07)60048-4.
Slijepcevic P. 1998. Telomeres and mechanisms of robertsonian fusion. Chromosoma, 107(2):136-140, https://doi.org/10.1007/s004120050289.
Sumner A T. 1972. A simple technique for demonstrating centromeric heterochromatin. Exp. Cell Res., 75(1):304-306, https://doi.org/10.1016/0014-4827(72)90558-7.
Symonová R, Majtánová Z, Sember A, Staaks G B, Bohlen J, Freyhof J, Rábová M, Ráb P. 2013. Genome differentiation in a species pair of coregonine fishes:an extremely rapid speciation driven by stress-activated retrotransposons mediating extensive ribosomal DNA multiplications. BMC Evol. Biol., 13(1):42, https://doi.org/10.1186/1471-2148-13-42.
Wang D X, Wang J, Guo F, Liang J R, Qin Y X. 2002. Study on the karyotype in Nibea miichtheoides. Marine Sci,. 26(11):68-70, https://doi.org/10.3969/j.issn.1000-3096.2002.11.019. (in Chinese with English abstract)
Wang X Y. 2012. Chromosome karyotypic analyses of some cultured fishes of the East China Sea. Zhejiang Ocean Univ. Press, Zhejiang, China. p.1-65. (in Chinese).
Zheng J, Cao K, Yang A R, Zhang J, Wang Z Y, Cai M Y. 2016.Chromosome mapping using genomic DNA and repetitive DNA sequences as probes for somatic chromosome identification in Nibea albiflora. J. Fish. China, 40(8):1 156-1 162, https://doi.org/10.11964/jfc.20151110166.(in Chinese with English abstract)
Copyright © Haiyang Xuebao