Cite this paper:
OLEYIBLO Oloche James, CAO Jiashun, FENG Qian, WANG Gan, XUE Zhaoxia, FANG Fang. Evaluation and improvement of wastewater treatment plant performance using BioWin[J]. Journal of Oceanology and Limnology, 2015, 33(2): 468-476

Evaluation and improvement of wastewater treatment plant performance using BioWin

OLEYIBLO Oloche James1, CAO Jiashun1,2, FENG Qian1, WANG Gan3, XUE Zhaoxia1, FANG Fang1
1 College of Environment, Hohai University, Nanjing 210098, China;
2 National Engineering Research Center of Water Resource Effi cient Utilization and Engineering Safety, Hohai University, Nanjing 210098, China;
3 Anhui Guozhen Environmental Protection Sci. and Tech. Co. Ltd., Hefei 230088, China
Abstract:
In this study, the activated sludge model implemented in the BioWin® software was validated against full-scale wastewater treatment plant data. Only two stoichiometric parameters (Yp/acetic and the heterotrophic yield (YH)) required calibration. The value 0.42 was used for Yp/acetic in this study, while the default value of the BioWin ® software is 0.49, making it comparable with the default values of the corresponding parameter (yield of phosphorus release to substrate uptake (YPO4)) used in ASM2, ASM2d, and ASM3P, respectively. Three scenarios were evaluated to improve the performance of the wastewater treatment plant, the possibility of wasting sludge from either the aeration tank or the secondary clarifier, the construction of a new oxidation ditch, and the construction of an equalization tank. The results suggest that construction of a new oxidation ditch or an equalization tank for the wastewater treatment plant is not necessary. However, sludge should be wasted from the aeration tank during wet weather to reduce the solids loading of the clarifiers and avoid effluent violations. Therefore, it is recommended that the design of wastewater treatment plants (WWTPs) should include flexibility to operate the plants in various modes. This is helpful in selection of the appropriate operating mode when necessary, resulting in substantial reductions in operating costs.
Key words:    activated sludge|aeration tank|equalization tank|secondary clarifier|wet weather   
Received: 2014-05-13   Revised: 2014-07-04
Tools
PDF (1123 KB) Free
Print this page
Add to favorites
Email this article to others
Authors
Articles by OLEYIBLO Oloche James
Articles by CAO Jiashun
Articles by FENG Qian
Articles by WANG Gan
Articles by XUE Zhaoxia
Articles by FANG Fang
References:
APHA. 1998. Standard Methods for the Examination of Water and Wastewater, 20th edn, American Public Health, Washington DC, USA.
Barker P S, Dold P L. 1997. General model for biological nutrients removal activated-sludge systems: model presentation. Water Environ. Res., 69 (5): 969-984, http:// dx.doi.org/10.2175/106143097X125669.
EnviroSim Associates Ltd. 2008. User Manual for BioWin v.3.0, EnviroSim Associates Ltd., Hamilton, Canada. Ferrer J, Seco A, Serralta J, Ribes J, Manga J, Asensi E, Morenilla J J, Llavador F. 2008. DESASS: a software tool for designing, simulating and optimising WWTPs. Environ Modell Softw., 23 (1): 19-26, http://dx.doi.org/ 10.1016/j.envsoft.2007.04.005.
Gernaey K V, Loosdrecht M C M, Henze M, Lind M, Jorgensen S B. 2004. Activated sludge wastewater treatment plant modelling and simulation: state of the art. Environ. Modell. Softw., 19 (9): 763-783, http://dx.doi.org/10. 1016/j.envsoft.2003.03.005.
Henze M, Guje W, Mino T, Matsuo T, Loosdrech M V. 2002. Activated sludge models ASM1, ASM2, ASM2d and ASM3. IWA Scientific and Technical Report No.9, London, UK. p.45-102.
Hulsbeek J J W, Kruit J, Roeleveld P J, van Loosdrecht M C M. 2002. A practical protocol for dynamic modelling of activated sludge systems. Water Sci. Technol., 45 (6): 127- 136.
Langergraber G, Rieger L, Winkler S, Alex J, Wiese J, Owerdieck C, Ahnert A, Simon J, Maurer M. 2004. A guideline for simulation studies of wastewater treatment plants. Water Sci. Technol., 50 (7): 131-138.
Liwarska-Bizukojc E, Biernacki R. 2010. Identification of the most sensitive parameters in the activated sludge model implemented in BioWin software. Bioresour. Technol., 101 (19): 7 278-7 285, http://dx.doi.org/10.1016/j.biortech. 2010.04.065.
Liwarska-Bizukojc E, Olejnik D, Biernacki R, Ledakowicz S. 2013. Improving the operation of a full-scale wastewater treatment Plant with use of a complex activated sludge model. Environ. Prot. Eng., 39 : 659-670, http://dx.doi. org/10.5277/EPE130114.
Mamais D, Jenkins D, Pitt P. 1993. A rapid physical-chemical method for the determination for readily biodegradable soluble COD in municipal Wastewater. Water Res., 27 (1): 195-197, http://dx.doi.org/10.1016/0043-1354(93)90211-y.
Meijer S C F, van der Spoel H, Susanti S, Heijnen J J, van Loosdrecht M C M. 2002. Error diagnostics and data reconciliation for activated sludge modelling using mass balances. Water Sci. and Technol., 45 (6): 145-156.
Meijer SCF, van Loosdrecht MCM, Heijnen J J. 2001. Metabolic modelling of full-scale biological nitrogen and phosphorus removing WWTP's. Water Res., 35 (11): 2 711-2 723, http://dx.doi.org/10.1016/S0043-1354(00) 00567-4.
Melcer H, Dold P L, Jones R M, Bye C M, Takacs I, Stensel H D, Wilson A W, Sun P, Bury S. 2003. Methods for wastewater characterization in activated sludge modelling. Report No. 99-WWF-3 Water Environment Research Foundation (WERF), Alexandria, VA. USA.
Petersen B, Gernaey K V, Henze M, Vanrolleghem P A. 2002. Evaluation of an ASM1 model calibration procedure on a municipal-industrial wastewater treatment Plant. J. Hydroinform., 4 : 15-38.
Puig S, van Loosdrecht M C M, Colprim J, Meijer S C F. 2008. Data evaluation of full-scale wastewater treatment plants by mass balance. Water Res., 42 (18): 4 645-4 655, http:// dx.doi.org/10.1016/j.watres.2008.08.009.
Rieger L, Vanrolleghem P A, Takács I, Johnson B R. 2008. Wastewater Treatment Modelling, Quo Vadis? Water 21, IWA Publishing, London, UK. p.59-60.
Rieger L, Koch G, Kuhni M, Gujer W, Siegrist H. 2001. The EAWAG BIO-P Module for activated sludge model No.3. Water Res., 35 (16): 3 887-3 903.
Russel B M, Henriksen J P, Jorgensen S B, Gani R. 2002. Integration of design and control through model analysis. Comput. Chem. Eng., 26 (2): 213-225, http://dx.doi.org/ 10.1016/S0098-1354(01)00742-6.
Sin G, De Pauw D J W, Weijers S, Vanrolleghem P A. 2008. An effi cient approach to automate the manual trial and error calibration of activated sludge models. Biotechnol. Bioeng., 100 (3): 516-528, http://dx.doi.org/10.1002/ bit.21769.
STOWA. 1996. Methods for influent characterization: inventory and guidelines. Report STOWA 96-08. Utrecht, The Netherlands. (in Dutch)
Thomann M. 2008. Quality evaluation methods for wastewater treatment plant data. Water Sci. Technol., 57 (10): 1 601- 1 609, http://dx.doi.org/10.2166/wst.2008.151.
Vanrolleghem P A. 2001. Model Simulation for Improved Operation and Control of Wastewater Treatment Plants. BIOMATH. Department for Applied Mathematics, Biometrics and Process Control Ghent University, Coupure Links 653, B-9000 Gent, Belgium. http:// biomath.rug.ac.be/~peter.
Water Environment Federation (WEF). 2010. Nutrient Removal—A Manual of Practice No. 34, McGraw-Hill, New York, Water Environment Federation, Alexandra, VA22314-1994 USA.
Copyright © Haiyang Xuebao