Cite this paper:
ZHANG Zhixiang, LIU Lingling, WANG Fan. Oceanic barrier layer variation induced by tropical cyclones in the Northwest Pacific[J]. Journal of Oceanology and Limnology, 2019, 37(2): 375-384

Oceanic barrier layer variation induced by tropical cyclones in the Northwest Pacific

ZHANG Zhixiang1,2,4, LIU Lingling1,3,4, WANG Fan1,3,4
1 Key Laboratory of Ocean Circulation and Waves, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China;
2 University of Chinese Academy of Sciences, Beijing 100049, China;
3 Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China;
4 Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
Abstract:
According to Argo profiles and one-dimensional Price-Weller-Pinkel models, the oceanic barrier layer variation induced by tropical cyclones is adequately analyzed in the Northwest Pacific. Results show that tropical cyclones mainly affect the oceanic barrier layer through intensifying and weakening pre-existed barrier layer. The former even may generate new one after tropical cyclones' passage. The latter can make pre-existed one disappear. Local wind stress and precipitation, the dominant factors, primarily determine the variation of barrier layer. Negative effects of wind mainly focus on the north of 20°N. This phenomenon is more meaningful for slow tropical cyclones. Conversely, positive effects of wind and precipitation center on the south of 20°N in the Northwest Pacific. Some data indicate that the barrier layer variation is also closely related with initial mixed layer depth and barrier layer thickness.
Key words:    Oceanic barrier layer|tropical cyclones|Northwest Pacific|Argo|Price-Weller-Pinkel model   
Received: 2018-01-09   Revised: 2018-03-02
Tools
PDF (2385 KB) Free
Print this page
Add to favorites
Email this article to others
Authors
Articles by ZHANG Zhixiang
Articles by LIU Lingling
Articles by WANG Fan
References:
Androulidakis Y, Kourafalou V, Halliwell G, Le Hénaff M, Kang H, Mehari M, Atlas R. 2016. Hurricane interaction with the upper ocean in the Amazon-Orinoco plume region. Ocean Dynamics, 66(1-2):1 559-1 588.
Balaguru K, Chang P, Saravanan R, Leung L R, Xu Z, Li M K, Hsieh J S. 2012. Ocean barrier layers' effect on tropical cyclone intensification. Proceedings of the National Academy of Sciences of the United States of America, 109(36):14 343-14 347, http://dx.doi.org/10.1073/pnas.1201364109.
Bender M A, Ross R J, Tuleya R E, Kurihara Y. 1993. Improvements in tropical cyclone track and intensity forecasts using the GFDL initialization system. Monthly Weather Review, 121(7):2 046-2 061.
Chang Y C, Chen G Y, Tseng R S, Centurioni L R, Chu P C. 2012. Observed near-surface currents under high wind speeds. Journal of Geophysical Research:Oceans, 117(C11):C11026.
Chang Y C, Chen G Y, Tseng R S, Centurioni L R, Chu P C. 2013. Observed near-surface flows under all tropical cyclone intensity levels using drifters in the northwestern Pacific. Journal of Geophysical Research:Oceans, 118(5):2 367-2 377.
Chiang T L, Wu C R, Oey L Y. 2011. Typhoon Kai-Tak:an ocean's perfect storm. Journal of Physical Oceanography, 41(1):221-233.
Chu P C, Lu S H, Liu W T. 1999. Uncertainty of South China Sea prediction using NSCAT and National Centers for Environmental Prediction winds during tropical storm Ernie, 1996. Journal of Geophysical Research:Oceans, 104(C5):11 273-11 289.
Chu P C, Veneziano J M, Fan C W, Carron M J, Liu W T. 2000. Response of the South China Sea to tropical cyclone Ernie 1996. Journal of Geophysical Research:Oceans, 105(C6):13 991-14 009.
Chu P C, Wang G H. 2003. Seasonal variability of thermohaline front in the central South China Sea. Journal of Oceanography, 59(1):65-78.
Cione J J, Uhlhorn E W. 2003. Sea surface temperature variability in hurricanes:implications with respect to intensity change. Monthly Weather Review, 131(8):1 783-1 796.
Fu H L, Wang X D, Chu P C, Zhang X F, Han G J, Li W. 2014. Tropical cyclone footprint in the ocean mixed layer observed by Argo in the Northwest Pacific. Journal of Geophysical Research:Oceans, 119(11):8 078-8 092.
Grodsky S A, Carton J A, Liu H L. 2008. Comparison of bulk sea surface and mixed layer temperatures. Journal of Geophysical Research:Oceans, 113(C10):C10026, http://dx.doi.org/10.1029/2008jc004871.
Huang W R, Xiao H. 2009. Numerical modeling of dynamic wave force acting on Escambia Bay Bridge deck during Hurricane Ivan. Journal of Waterway, Port, Coastal, and Ocean Engineering, 135(4):164-175.
Huffman G J, Adler R F, Curtis S, Bolvin D T, Nelkin E J. 2007. Global rainfall analyses at monthly and 3-h time scales. In:Levizzani V, Bauer P, Turk F J eds. Measuring Precipitation from Space. Springer, Dordrecht, Netherlands. p.291-305.
Jacob S D, Shay L K, Mariano A J, Black P G. 2000. The 3D oceanic mixed layer response to Hurricane Gilbert.Journal of Physical Oceanography, 30(6):1 407-1 429.
Jaimes B, Shay L K. 2009. Mixed layer cooling in mesoscale oceanic eddies during hurricanes Katrina and Rita.Monthly Weather Review, 137(12):4 188-4 207.
Jourdain N C, Lengaigne M, Vialard J, Madec G, Menkes C E, Vincent E M, Jullien S, Barnier B. 2013. Observationbased estimates of surface cooling inhibition by heavy rainfall under tropical cyclones. Journal of Physical Oceanography, 43(1):205-221.
Kaplan J, DeMaria M. 2003. Large-scale characteristics of rapidly intensifying tropical cyclones in the North Atlantic basin. Weather and Forecasting, 18(6):1 093-1 108.
Large W G, Pond S. 1981. Open ocean momentum flux measurements in moderate to strong winds. Journal of Physical Oceanography, 11(3):324-336.
Lukas R, Lindstrom E. 1991. The mixed layer of the western equatorial Pacific Ocean. Journal of Geophysical Research:Oceans, 96(S01):3 343-3 357.
Nam S, Kim D J, Moon W M. 2012. Observed impact of mesoscale circulation on oceanic response to Typhoon Man-Yi (2007). Ocean Dynamics, 62(1):1-12.
Neetu S, Lengaigne M, Vincent E M, Vialard J, Madec G, Samson G, Ramesh Kumar M R, Durand F. 2014. Influence of upper-ocean stratification on tropical cyclone-induced surface cooling in the Bay of Bengal.Journal of Geophysical Research:Oceans, 117(C12):C12020.
Oey L Y, Ezer T, Wang D P, Fan S J, Yin X Q. 2006. Loop current warming by hurricane Wilma. Geophysical Research Letters, 33(8):L08613, http://dx.doi.org/10.1029/2006gl025873.
Powell M D, Vickery P J, Reinhold T A. 2003. Reduced drag coefficient for high wind speeds in tropical cyclones.Nature, 422(6929):279-283.
Price J F, Sanford T B, Forristall G Z. 1994. Forced stage response to a moving hurricane. Journal of Physical Oceanography, 24(2):233-260.
Price J F, Weller R A, Pinkel R. 1986. Diurnal cycling:observations and models of the upper ocean response to diurnal heating, cooling, and wind mixing. Journal of Geophysical Research:Oceans, 91(C7):8 411-8 427.
Price J F. 1981. Upper ocean response to a hurricane. Journal of Physical Oceanography, 11(2):153-175.
Rappin E D, Nolan D S, Majumdar S J. 2013. A highly configurable vortex initialization method for tropical cyclones. Monthly Weather Review, 141(10):3 556-3 675.
Sanford T B, Black P G, Haustein J R, Feeney J W, Forristall G Z, Price J F. 1987. Ocean response to a hurricane. Part I:observations. Journal of Physical Oceanography, 17(11):2 065-2 083.
Schade L R, Emanuel K A. 1999. The ocean's effect on the intensity of tropical cyclones:results from a simple coupled atmosphere-ocean model. Journal of the Atmospheric Sciences, 56(4):642-651.
Shay L K, Black P G, Mariano A J, Hawkins J D, Elsberry R L. 1992. Upper ocean response to Hurricane Gilbert. Journal of Geophysical Research:Oceans, 97(C12):20 227-20 248.
Shay L K, Uhlhorn E W. 2008. Loop current response to hurricanes Isidore and Lili. Monthly Weather Review, 136(9):3 248-3 274, http://dx.doi.org/10.1175/2007mwr2169.1.
Sprintall J, Tomczak M. 1992. Evidence of the barrier layer in the surface layer of the tropics. Journal of Geophysical Research:Oceans, 97(C5):7 305-7 316.
Vincent E M, Lengaigne M, Madec G, Vialard J, Samson G, Jourdain N C, Menkes C E, Jullien S. 2012. Processes setting the characteristics of sea surface cooling induced by tropical cyclones. Journal of Geophysical Research:Oceans, 117(C2):C02020.
Vissa N K, Satyanarayana A N V, Kumar B P. 2013. Response of upper ocean and impact of barrier layer on Sidr cyclone induced sea surface cooling. Ocean Science Journal, 48(3):279-288, http://dx.doi.org/10.1007/s12601-013-0026-x.
Wang X D, Han G J, Qi Y Q, Li W. 2011. Impact of barrier layer on typhoon-induced sea surface cooling. Dynamics of Atmospheres and Oceans, 52(3):367-385, http://dx.doi.org/10.1016/j.dynatmoce.2011.05.002.
Willoughby H E, Darling R W R, Rahn M E. 2006. Parametric representation of the primary hurricane vortex. Part Ⅱ:a new family of sectionally continuous profiles. Monthly Weather Review, 134(4):1 102-1 120.
Yu L S, Jin X Z, Weller R A. 2008. Multidecade global flux datasets from the objectively analyzed air-sea fluxes(OAFlux) project:latent and sensible heat fluxes, ocean evaporation, and related surface meteorological variables.Woods Hole Oceanographic Institution, Woods Hole, Massachusetts. p.64.
Yu L S, Weller R A. 2007. Objectively analyzed air-sea heat fluxes for the global ice-free oceans (1981-2005). Bulletin of the American Meteorological Society, 88(4):527-540.
Zheng Z W, Ho C R, Kuo N J. 2008. Importance of pre-existing oceanic conditions to upper ocean response induced by Super Typhoon Hai-Tang. Geophysical Research Letters, 35(20):L20603.
Copyright © Haiyang Xuebao