Cite this paper:
DIN Siti Sabariah, CHEW Kit Wayne, CHANG Yu-Kaung, SHOW Pau Loke, PHANG Siew Moi, JUAN Joon Ching. Extraction of agar from Eucheuma cottonii and Gelidium amansii seaweeds with sonication pretreatment using autoclaving method[J]. Journal of Oceanology and Limnology, 2019, 37(3): 871-880

Extraction of agar from Eucheuma cottonii and Gelidium amansii seaweeds with sonication pretreatment using autoclaving method

DIN Siti Sabariah1,5, CHEW Kit Wayne1, CHANG Yu-Kaung2, SHOW Pau Loke1, PHANG Siew Moi3,4, JUAN Joon Ching5
1 Department of Chemical and Environmental Engineering, Faculty of Engineering, University of Nottingham Malaysia, Jalan Broga, Semenyih 43500, Selangor Darul Ehsan, Malaysia;
2 Department of Chemical Engineering, Ming Chi University of Technology, New Taipei, Taiwan 24301, China;
3 Institute of Ocean and Earth Sciences, University of Malaya, Kuala Lumpur 50603, Malaysia;
4 Institute of Biological Sciences, University of Malaya, Kuala Lumpur 50603, Malaysia;
5 Nanotechnology & Catalysis Research Centre, Institute of Postgraduate Studies, University of Malaya, Kuala Lumpur 50603, Malaysia
Abstract:
The effect of sonication pretreatment condition on Eucheuma cottonii and Gelidium amansii seaweed towards agar extraction wae studied. Four parameters were changed during sonication to investigate the effects on agar yield and quality. These parameters include the time interval, concentration ratio, frequency, and intensity. The highest amount of agar extracted from Eucheuma cottonii species could be obtained from the time interval of 30 min, seaweed weight to solvent volume ratio of 1:20, the frequency of 35 Hz, and the sonication power intensity of 30%. For Gelidium amansii species, the best agar yield also could be obtained from the time interval of 30 min, 1:20 of seaweed weight to water volume ratio, the frequency of 35 Hz, and power intensity of 30%. From the experiment, sonication pretreatment significantly influenced the yield and properties of extracted agar. The sonication with autoclaved seaweed produced agar containing less sulfate content, which is an excellent chemical property for gel electrophoresis applications. The gel strength of sonication with autoclaving for both seaweeds, Eucheuma and Gelidium species was the highest among those by sonication with direct heating, which proved that sonication pretreatment with autoclaving could enhance the physical properties of the agar.
Key words:    Gelidium amansii|Eucheuma cottonii|autoclaving|sonication pretreatment|water extraction   
Received: 2018-05-15   Revised: 2018-08-01
Tools
PDF (674 KB) Free
Print this page
Add to favorites
Email this article to others
Authors
Articles by DIN Siti Sabariah
Articles by CHEW Kit Wayne
Articles by CHANG Yu-Kaung
Articles by SHOW Pau Loke
Articles by PHANG Siew Moi
Articles by JUAN Joon Ching
References:
Abdul Khalil H P S, Lai T K, Tye Y Y, Rizal S, Chong E W N, Yap S W, Hamzah A A, Nurul Fazita M R, Paridah M T. 2018. A review of extractions of seaweed hydrocolloids:properties and applications. eXPRESS Polymer Letters, 12(4):296-317, https://doi.org/10.3144/expresspolymlett.2018.27.
Ahmad R, Surif M, Ramli N, Yahya N, Nor A R M, Bekbayeva L. 2011. A preliminary study on the agar content and agar gel strength of Gracilaria manilaensis using different agar extraction processes. World Applied Sciences Journal, 15(2):184-188.
Andriamanantoanina H, Chambat G, Rinaudo M. 2007.Fractionation of extracted Madagascan Gracilaria corticata polysaccharides:structure and properties.Carbohydrate Polymers, 68(1):77-88.
Arvizu-Higuera D L, Rodríguez-Montesinos Y E, Murillo-Álvarez J I, Muñoz-Ochoa M, Hernández-Carmona G. 2008. Effect of alkali treatment time and extraction time on agar from Gracilaria vermiculophylla. Journal of Applied Phycology, 20(5):515-519.
Bird K T, Hinson T K. 1992. Seasonal variations in agar yields and quality from North Carolina agarophytes. Botanica Marina, 35(4):291-295.
Bleakley S, Hayes M. 2017. Algal proteins:extraction, application, and challenges concerning production.Foods, 6(5):33, https://doi:10.3390/foods6050033.
Chan S W, Mirhosseini H, Taip F S, Ling T C, Tan C P. 2013.Comparative study on the physicochemical properties of κ-carrageenan extracted from Kappaphycus alvarezii(doty) doty ex Silva in Tawau, Sabah, Malaysia and commercial κ-carrageenans. Food Hydrocolloids, 30(2):581-588, https://doi.org/10.1016/j.foodhyd.2012.07.010.
Chew K W, Juan J C, Phang S M, Ling T C, Show P L. 2018a.An overview on the development of conventional and alternative extractive methods for the purification of agarose from seaweed. Separation Science and Technology, 53(3):467-480, https://doi.org/10.1080/01496395.2017.1394881.
Chew K W, Show P L, Yap Y J, Juan J C, Phang S M, Ling T C, Chang J S. 2018b. Sonication and grinding pretreatments on Gelidium amansii seaweed for the extraction and characterization of agarose. Frontiers of Environmental Science & Engineering, 12(4):2.
Distantina S, Wiratni, Fahrurrozi M, Rochmadi. 2011.Carrageenan properties extracted from Eucheuma cottonii, Indonesia. World Academy of Science, Engineering and Technology, 54(6):738-742.
Duckworth M, Yaphe W. 1971. The structure of agar:part I.Fractionation of a complex mixture of polysaccharides.Carbohydrate Research, 16(1):189-197.
Fidelis G P, Camara R B G, Queiroz M F, Costa M S S P, Santos P C, Rocha H A O, Costa L S. 2014. Proteolysis, NaOH and ultrasound-enhanced extraction of anticoagulant and antioxidant sulfated polysaccharides from the edible seaweed, Gracilaria birdiae. Molecules, 19(11):18 511-18 526. https://doi.org/10.3390/molecules191118511.
Francavilla M, Pineda A, Lin C S K, Franchi M, Trotta P, Romero A A, Luque R. 2013. Natural porous agar materials from macroalgae. Carbohydrate Polymers, 92(2):1 555-1 560, https://doi.org/10.1016/j.carbpol.2012. 11.005.
Fuse T, Goto F. 1971. Studies on utilization of agar. Agricultural and Biological Chemistry, 35(6):799-804, https://doi.org/10.1080/00021369.1971.10859998.
Gómez-Ordóñez E, Rupérez P. 2011. FTIR-ATR spectroscopy as a tool for polysaccharide identification in edible brown and red seaweeds. Food Hydrocolloids, 25(6):1 514-1 520.
Hernández-Carmona G, Freile-Pelegrín Y, Hernández-Garibay E. 2013. Conventional and alternative technologies for the extraction of algal polysaccharides. In:Domínguez H ed. Functional Ingredients from Algae for Foods and Nutraceuticals. Woodhead Publishing, Oxford, Philadelphia, p.476-515.
Kumar V, Fotedar R. 2009. Agar extraction process for Gracilaria cliftonii (Withell, Millar, & Kraft, 1994).Carbohydrate Polymers, 78(4):813-819, https://doi.org/10.1016/j.carbpol.2009.07.001.
Li H Y, Yu X J, Jin Y, Zhang W, Liu Y L. 2008. Development of an eco-friendly agar extraction technique from the red seaweed Gracilaria lemaneiformis. Bioresource Technology, 99(8):3 301-3 305, https://doi.org/10.1016/j.biortech.2007.07.002.
Loureiro R R, Reis R P, Critchley A T. 2010.In vitro cultivation of three Kappaphycus alvarezii (Rhodophyta, Areschougiaceae) variants (green, red and brown)exposed to a commercial extract of the brown alga Ascophyllum nodosum (Fucaceae, Ochrophyta). Journal of Applied Phycology, 22(1):101-104.
Mollet J C, Rahaoui A, Lemoine Y. 1998. Yield, chemical composition and gel strength of agarocolloids of Gracilaria gracilis, Gracilariopsis longissima and the newly reported Gracilaria cf. vermiculophylla from Roscoff (Brittany, France). Journal of Applied Phycology, 10(1):59-66.
Montaño N E, Villanueva R D, Romero J B. 1999. Chemical characteristics and gelling properties of agar from two Philippine Gracilaria spp. (Gracilariales, Rhodophyta).Journal of Applied Phycology, 11(1):27-34.
Navarro D A, Flores M L, Stortz C A. 2007. Microwaveassisted desulfation of sulfated polysaccharides.Carbohydrate Polymers, 69(4):742-747.
Nishinari K, Fang Y P. 2017. Relation between structure and rheological/thermal properties of agar. A mini-review on the effect of alkali treatment and the role of agaropectin.Food Structure, 13:24-34. https://doi.org/10.1016/j.foostr.2016.10.003.
Orduña-Rojas J, García-Camacho K Y, Orozco-Meyer P, Ríosmena-Rodríguez R, Pacheco-Ruiz I, ZertucheGonzález J, Meling-López A E. 2008. Agar properties of two species of Gracilariaceae from the Gulf of California, Mexico. Journal of Applied Phycology, 20(2):169-175.
Ouyang Q Q, Hu Z, Li S D, Quan W Y, Wen L L, Yang Z M, Li P W. 2018. Thermal degradation of agar:mechanism and toxicity of products. Food Chemistry, 264:277-283, https://doi.org/10.1016/j.foodchem.2018.04.098.
Oyieke H A. 1993. The yield, physical and chemical properties of agar gel from Gracilaria species (Gracilariales, Rhodophyta) of the Kenya coast. Hydrobiologia, 260-261(1):613-620.
Recalde M P, Canelón D J, Compagnone R S, Matulewicz M C, Cerezo A S, Ciancia M. 2016. Carrageenan and agaran structures from the red seaweed Gymnogongrus tenuis.Carbohydrate Polymers, 136:1 370-1 378, https://doi.org/10.1016/j.carbpol.2015.10.007.
Sasuga K, Yamanashi T, Nakayama S, Ono S, Mikami K. 2017. Optimization of yield and quality of agar polysaccharide isolated from the marine red macroalga Pyropia yezoensis. Algal Research, 26:123-130, https://doi.org/10.1016/j.algal.2017.07.010.
Souza H K S, Sousa A M M, Gómez J, Gonçalves M P. 2012.Complexation of WPI and microwave-assisted extracted agars with different physicochemical properties.Carbohydrate Polymers, 89(4):1 073-1 080, https://doi.org/10.1016/j.carbpol.2012.03.065
Stanley N F. 1995. Agars. In:Stephen A M ed. Food Polysaccharides and Their Applications. Marcel Dekker Inc, New York. p.187-204.
Wang L J, Shen Z P, Mu H M, Lin Y, Zhang J L, Jiang X L. 2017. Impact of alkali pretreatment on yield, physicochemical and gelling properties of high quality agar from Gracilaria tenuistipitata. Food Hydrocolloids, 70:356-362, https://doi.org/10.1016/j.foodhyd.2016.11.042.
Yarnpakdee S, Benjakul S, Kingwascharapong P. 2015.Physico-chemical and gel properties of agar from Gracilaria tenuistipitata from the lake of Songkhla, Thailand. Food Hydrocolloids, 51:217-226, https://doi.org/10.1016/j.foodhyd.2015.05.004.
Copyright © Haiyang Xuebao