Cite this paper:
HUANG Wen, XU Fei, LI Li, QUE Huayong, ZHANG Guofan. The transcription of iodothyronine deiodinase genes is regulated by thyroid hormone receptor in the Pacific oyster Crassostrea gigas[J]. Journal of Oceanology and Limnology, 2019, 37(4): 1317-1323

The transcription of iodothyronine deiodinase genes is regulated by thyroid hormone receptor in the Pacific oyster Crassostrea gigas

HUANG Wen1,2, XU Fei1,4,5, LI Li1,3,5, QUE Huayong1,3,4,5, ZHANG Guofan1,3,4,5
1 Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China;
2 School of Marine Sciences, Guangxi University, Nanning 530004, China;
3 University of Chinese Academy of Sciences, Beijing 100049, China;
4 Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China;
5 Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
Abstract:
Thyroid hormones (THs) are indispensable for each phyla in Chordata, while their functions in the non-chordate invertebrates are indistinct. Studies on the TH system in non-chordate invertebrates are important for understanding the evolution of TH system and may be applied in aquaculture or biofouling control at the same time. Iodothyronine deiodinases are keys to studying the TH system, as they are critical enzymes in maintaining TH homeostasis by catalyzing the initiation and termination of the effects of thyroid hormone in vertebrates. Here, we report the primary physiological effects of T4, the outer ring deiodinase activity, and a similar transcription regulation of two oyster deiodinases by TH receptor (CgTR) in an invertebrate, Pacific oyster Crassostrea gigas. L-thyroxine (T4) may have an important physiological function in the oyster, suggested by the growth retardation effect of excessive T4 in umbo larvae stage. The outer ring deiodinase activity transforming T4 to T3 (3, 3', 5-triiodothyronine) was then detected in the Pacific oyster in vivo, which may be conducted by two oyster deiodinases (CgDx and CgDy). Transcription regulation of CgTR onto these two deiodinase genes was also verified by electrophoretic mobility shift assay and dual luciferase reporter assay in mammalian cells. These results contribute to a better understanding of the evolution of the TH system.
Key words:    iodothyronine deiodinase|mollusk|thyroid hormone (TH)|TH responsive elements   
Received: 2018-08-01   Revised: 2018-09-25
Tools
PDF (575 KB) Free
Print this page
Add to favorites
Email this article to others
Authors
Articles by HUANG Wen
Articles by XU Fei
Articles by LI Li
Articles by QUE Huayong
Articles by ZHANG Guofan
References:
Barca-Mayo O, Liao X H, Alonso M, Di Cosmo C, Hernandez A, Refetoff S, Weiss R E. 2011. Thyroid hormone receptor α and regulation of type 3 deiodinase. Molecular Endocrinology, 25(4):575-583.
Bianco A C, Salvatore D, Gereben B, Berry M J, Larsen P R. 2002. Biochemistry, cellular and molecular biology, and physiological roles of the iodothyronine selenodeiodinases.Endocrine Reviews, 23(1):38-89.
Brown C L, Urbinati E C, Zhang W M, Brown S B, McCombKobza M. 2014. Maternal thyroid and glucocorticoid hormone interactions in larval fish development, and their applications in aquaculture. Reviews in Fisheries Science & Aquaculture, 22(3):207-220.
Carosa E, Fanelli A, Ulisse S, Di Lauro R, Rall J E, Jannini E A. 1998. Ciona intestinalis nuclear receptor 1:a member of steroid/thyroid hormone receptor family. Proceedings of the National Academy of Sciences of the United States of America, 95(19):11 152-11 157.
Fukazawa H, Hirai H, Hori H, Roberts R D, Nukaya H, Ishida H, Tsuji K. 2001. Induction of abalone larval metamorphosis by thyroid hormones. Fisheries Science, 67(5):985-988.
Heyland A, Price D A, Bodnarova-Buganova M, Moroz L L. 2006. Thyroid hormone metabolism and peroxidase function in two non-chordate animals. Journal of Experimental Zoology. Part B, Molecular and Developmental Evolution, 306B(6):551-566.
Huang L Y, Specker J L, Bengtson D A. 1996. Effect of triiodothyronine on the growth and survival of larval striped bass (Morone saxatilis). Fish Physiology and Biochemistry, 15(1):57-64.
Huang W, Xu F, Qu T, Li L, Que H Y, Zhang G F. 2015a.Iodothyronine deiodinase gene analysis of the Pacific oyster Crassostrea gigas reveals possible conservation of thyroid hormone feedback regulation mechanism in mollusks. Chinese Journal of Oceanology and Limnology, 33(4):997-1 006.
Huang W, Xu F, Qu T, Zhang R, Li L, Que H Y, Zhang G F. 2015b. Identification of thyroid hormones and functional characterization of thyroid hormone receptor in the Pacific oyster Crassostrea gigas provide insight into evolution of the thyroid hormone system. PLoS ONE, 10(12):e0144991.
Jakobs T C, Schmutzler C, Meissner J, Köhrle J. 1997. The promoter of the human type I 5'-deiodinase gene-mapping of the transcription start site and identification of a DR+4 thyroid-hormone-responsive element. European Journal of Biochemistry, 247(1):288-297.
Landines M A, Sanabria A I, Senhorini J A, Urbinati E C. 2010.The influence of triiodothyronine (T3) on the early development of piracanjuba (Brycon orbignyanus). Fish Physiology and Biochemistry, 36(4):1 291-1 296.
Lustrino D, Silva A C M, Araujo I G, Tunholi V M, TunholiAlves V M, Castro R N, Carvalho D P, Pinheiro J, Marassi M P. 2017. Evidence of the presence of thyroid hormones in Achatina fulica snails. Anais da Academia Brasileira de Ciencias, 89(3):2 181-2 188.
Morvan-Dubois G, Demeneix B A, Sachs L M. 2008. Xenopus laevis as a model for studying thyroid hormone signalling:from development to metamorphosis. Molecular and Cellular Endocrinology, 293(1-2):71-79.
Paris M, Escriva H, Schubert M, Brunet F, Brtko J, Ciesielski F, Roecklin D, Vivat-Hannah V, Jamin E L, Cravedi J P, Scanlan T S, Renaud J P, Holland N D, Laudet V. 2008.Amphioxus postembryonic development reveals the homology of chordate metamorphosis. Current Biology, 18(11):825-830.
Power D M, Llewellyn L, Faustino M, Nowell M A, Bjornsson B T, Einarsdottir I E, Canario A V M, Sweeney G E. 2001.Thyroid hormones in growth and development of fish.Comparative Biochemistry and Physiology Part C:Toxicology & Pharmacology, 130(4):447-459.
Qiu C H, Liu S F, Hong Y, Fu Z Q, Wei M M, Ai D Z, Lin J J. 2012. Molecular characterization of thyroid hormone receptor beta from Schistosoma japonicum and assessment of its potential as a vaccine candidate antigen against schistosomiasis in BALB/c mice. Parasites & Vectors, 5:172.
Qu T, Huang B Y, Zhang L L, Li L, Xu F, Huang W, Li C Y, Du Y S, Zhang G F. 2014. Identification and functional characterization of two executioner caspases in Crassostrea gigas. PLoS One, 9(2):e89040.
Song Y, Miao J J, Pan L Q, Wang X. 2016. Exposure to 2,2',4,4'-tetrabromodiphenyl ether (BDE-47) alters thyroid hormone levels and thyroid hormone-regulated gene transcription in Manila clam Ruditapes philippinarum. Chemosphere, 152:10-16.
Umesono K, Murakami K K, Thompson C C, Evans R M. 1991. Direct repeats as selective response elements for the thyroid hormone, retinoic acid, and vitamin D3 receptors.Cell, 65(7):1 255-1 266.
Wu T T, Shi X W, Zhou Z, Wang L L, Wang M Q, Wang L L, Huang M M, Yang C Y, Song L S. 2012. An iodothyronine deiodinase from Chlamys farreri and its induced mRNA expression after LPS stimulation. Fish & Shellfish Immunology, 33(2):286-293.
Wu W J, Niles E G, LoVerde P T. 2007. Thyroid hormone receptor orthologues from invertebrate species with emphasis on Schistosoma mansoni. BMC Evolutionary Biology, 7:150.
Yen P M. 2001. Physiological and molecular basis of thyroid hormone action. Physiological Reviews, 81(3):1 097-1 142.
Zavacki A M, Ying H, Christoffolete M A, Aerts G, So E, Harney J W, Cheng S Y, Larsen P R, Bianco A C. 2005.Type 1 iodothyronine deiodinase is a sensitive marker of peripheral thyroid status in the mouse. Endocrinology, 146(3):1 568-1 575.
Zhang G F, Fang X D, Guo X M, Li L, Luo R B, Xu F, Yang P C, Zhang L L, Wang X T, Qi H G, Xiong Z Q, Que H Y, Xie Y L, Holland P W H, Paps J, Zhu Y B, Wu F C, Chen Y X, Wang J F, Peng C F, Meng J, Yang L, Liu J, Wen B, Zhang N, Huang Z Y, Zhu Q H, Feng Y, Mount A, Hedgecock D, Xu Z, Liu Y J, Domazet-Lošo T, Du Y S, Sun X Q, Zhang S D, Liu B H, Cheng P Z, Jiang X T, Li J, Fan D D, Wang W, Fu W J, Wang T, Wang B, Zhang J B, Peng Z Y, Li Y X, Li N, Wang J P, Chen M S, He Y, Tan F J, Song X R, Zheng Q M, Huang R L, Yang H L, Du X D, Chen L, Yang M, Gaffney P M, Wang S, Luo L H, She Z C, Ming Y, Huang W, Zhang S, Huang B Y, Zhang Y, Qu T, Ni P X, Miao G Y, Wang J Y, Wang Q, Steinberg C E W, Wang H Y, Li N, Qian L M, Zhang G J, Li Y R, Yang H M, Liu X, Wang J, Yin Y, Wang J. 2012. The oyster genome reveals stress adaptation and complexity of shell formation. Nature, 490(7418):49-54.
Zhang J S, Lazar M A. 2000. The mechanism of action of thyroid hormones. Annual Review of Physiology, 62:439-466.
Copyright © Haiyang Xuebao