Cite this paper:
SONG Junjie, ZHAO Bo, LIU Jinhu, CAO Liang, DOU Shuozeng. Comparative study of otolith and sulcus morphology for stock discrimination of yellow drum along the Chinese coast[J]. Journal of Oceanology and Limnology, 2019, 37(4): 1430-1439

Comparative study of otolith and sulcus morphology for stock discrimination of yellow drum along the Chinese coast

SONG Junjie1,3, ZHAO Bo1,3, LIU Jinhu1,2,4, CAO Liang1,2,4, DOU Shuozeng1,2,3,4
1 Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China;
2 Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China
Abstract:
Otolith morphology is widely used for fish stock identification. The sulcus, a structure on the medial side of the otolith, is an important feature in morphological analysis. This study was conducted to evaluate the feasibility of using sulcus morphology for stock identification and to compare its performance with commonly used otolith morphology analysis. Otoliths were collected and analyzed from three geographical groups (the Huanghe (Yellow) River estuary, HHE; the Jiaozhou Bay, JZB; and the Changjiang (Yangtze) River estuary, CJE) of yellow drum Nibea albiflora. The results show that the analysis of sulcus morphology based on shape indices (SIs), elliptic Fourier coefficients (EFc), and a combination of the two parameters identified stocks at overall classification rates of 51.0%, 72.5%, and 73.2%, respectively. These classification rates are similar to those obtained using otolith morphology analysis (57.0%, 73.8%, and 76.5% by SIs, EFc, and their combination, respectively). The findings suggest that sulcus morphology is comparable to the commonly used otolith morphology for identifying stocks of sciaenids, such as the yellow drum. For both otolith and sulcus morphology, EFc could identify the stocks more efficiently than SIs, while the combination of SIs and EFc was even better.
Key words:    otolith|sulcus|shape indices|elliptic Fourier analysis|stock discrimination|Nibea albiflora   
Received: 2018-03-14   Revised: 2018-05-30
Tools
PDF (606 KB) Free
Print this page
Add to favorites
Email this article to others
Authors
Articles by SONG Junjie
Articles by ZHAO Bo
Articles by LIU Jinhu
Articles by CAO Liang
Articles by DOU Shuozeng
References:
Agüera A, Brophy D. 2011. Use of saggital otolith shape analysis to discriminate Northeast Atlantic and Western Mediterranean stocks of Atlantic saury, Scomberesox saurus saurus (Walbaum). Fish. Res., 110(3):465-471.
Avigliano E, Comte G, Rosso J J, Mabragaña E, Rosa P D, Sanchez S, Volpedo A, del Rosso F, Schenone N F. 2015.Identification of fish stocks of river crocker (Plagioscion ternetzi) in Paraná and Paraguay rivers by using otolith morphometric analysis. Lat. Am. J. Aquat. Res., 43(4):718-725.
Avigliano E, Martinez C F R, Volpedo A V. 2014. Combined use of otolith microchemistry and morphometry as indicators of the habitat of the silverside (Odontesthes bonariensis) in a freshwater-estuarine environment. Fish.Res., 149:55-60.
Begg G A, Brown R W. 2000. Stock identification of haddock Melanogrammus aeglefinus on Georges Bank based on otolith shape analysis. Trans. Am. Fish. Soc., 129(4):935-945.
Begg G A, Waldman J R. 1999. An holistic approach to fish stock identification. Fish. Res., 43(1-3):35-44.
Bolles K L, Begg G A. 2000. Distinction between silver hake(Merluccius bilinearis) stocks in U.S. waters of the northwest Atlantic based on whole otolith morphometrics.Fish. Bull., 98(3):451-462.
Campana S E, Casselman J M. 1993. Stock discrimination using otolith shape analysis. Can. J. Fish. Aquat. Sci., 50(3):1 062-1 083.
Campana S E, Neilson J D. 1985. Microstructure of fish otoliths. Can. J. Fish. Aquat. Sci., 42(5):1 014-1 032.
Cardinale M, Doering-Arjes P, Kastowsky M, Mosegaard H. 2004. Effects of sex, stock, and environment on the shape of known-age Atlantic cod (Gadus morhua) otoliths. Can.J. Fish. Aquat. Sci., 61(2):158-167.
Castonguay M, Simard P, Gagnon P. 1991. Usefulness of Fourier analysis of otolith shape for Atlantic mackerel(Scomber scombrus) stock discrimination. Can. J. Fish.Aquat. Sci., 48(2):296-302.
Chen D G. 1991. Fish Ecology of the Bohai Sea and Yellow Sea. Ocean Press, Beijing. p.288-292. (in Chinese)
Chen J S. 2006. Theories of River Water Quality and Water Quality of Chinese Rivers. Science Press, Beijing. p.103-168. (in Chinese)
Crampton J S. 1995. Elliptic Fourier shape analysis of fossil bivalves:some practical considerations. Lethaia, 28(2):179-186.
de Carvalho B M, Vaz-dos-Santos A M, Spach H L, Volpedo A V. 2015. Ontogenetic development of the sagittal otolith of the anchovy, Anchoa tricolor, in a subtropical estuary.Sci. Mar., 79(4):409-418.
Ferguson G J, Ward T M, Gillanders B M. 2011. Otolith shape and elemental composition:complementary tools for stock discrimination of mulloway (Argyrosomus japonicus) in southern Australia. Fish. Res., 110(1):75-83.
Fisheries and Fisheries Administration of the Ministry of Agriculture. 2016. China Fisheries Yearbook. China Agriculture Press, Beijing. 45p. (in Chinese)
Gauldie R W. 1988. Function, form and time-keeping properties of fish otoliths. Comp. Biochem. Physiol. A:Physiol., 91(2):395-402.
Han Z Q, Gao T X, Yanagimoto T, Sakurai Y. 2008. Genetic population structure of Nibea albiflora in Yellow Sea and East China Sea. Fish. Sci., 74(3):544-552.
Hilborn R, Walters C J. 1992. Quantitative Fisheries Stock Assessment:Choice, Dynamics, and Uncertainty.Chapman and Hall, New York. 67p.
Kuhl F P, Giardina C R. 1982. Elliptic Fourier features of a closed contour. Comput. Graph. Image Process., 18(3):236-258.
Li X Z, Liu L S, Li B Q. 2010. Macrobenthos in China Sea:Research and Practice. Ocean Press, Beijing. 378p. (in Chinese)
Libungan L A, Pálsson S. 2015. ShapeR:an R package to study otolith shape variation among fish populations. PLoS One, 10(3):e0121102.
Lleonart J, Salat J, Torres G J. 2000. Removing allometric effects of body size in morphological analysis. J. Theor.Biol., 205(1):85-93.
Montanini S, Stagioni M, Valdrè G, Tommasini S, Vallisneri M. 2015. Intra-specific and inter-specific variability of the sulcus acusticus of sagittal otoliths in two gurnard species(Scorpaeniformes, Triglidae). Fish. Res., 161:93-101.
Monteiro L R, Di Beneditto A P M, Guillermo L H, Rivera L A. 2005. Allometric changes and shape differentiation of sagitta otoliths in sciaenid fishes. Fish. Res., 74(1-3):288-299.
Næs T, Mevik B H. 2001. Understanding the collinearity problem in regression and discriminant analysis. J.Chemom., 15(4):413-426.
Olejnik S F, Algina J. 1984. Parametric ANCOVA and the rank transform ANCOVA when the data are conditionally nonnormal and heteroscedastic. J. Educ. Behav. Stat., 9(2):129-149.
Parisi-Baradad V, Lombarte A, Garcia-Ladona E, Cabestany J, Piera J, Chic O. 2005. Otolith shape contour analysis using affine transformation invariant wavelet transforms and curvature scale space representation. Mar. Freshw.Res., 56(5):795-804.
Petursdottir G, Begg G A, Marteinsdottir G. 2006.Discrimination between Icelandic cod (Gadus morhua L.)populations from adjacent spawning areas based on otolith growth and shape. Fish. Res., 80(2-3):182-189.
Stransky C, Murta A G, Schlickeisen J, Zimmermann C. 2008.Otolith shape analysis as a tool for stock separation of horse mackerel (Trachurus trachurus) in the Northeast Atlantic and Mediterranean. Fish. Res., 89(2):159-166.
Sun S, Sun X X. 2011. Atlas of Long-term Changes in the Jiaozhou Bay Ecosystem. Ocean Press, Beijing. 809p. (in Chinese)
Torres G J, Lombarte A, Morales-Nin B. 2000a. Variability of the sulcus acusticus in the sagittal otolith of the genus Merluccius (Merlucciidae). Fish. Res., 46(1-3):5-13.
Torres G J, Lombarte A, Morales-Nin B. 2000b. Sagittal otolith size and shape variability to identify geographical intraspecific differences in three species of the genus Merluccius. J. Mar. Biol. Assoc. U. K., 80(2):333-342.
Tracey S R, Lyle J M, Duhamel G. 2006. Application of elliptical Fourier analysis of otolith form as a tool for stock identification. Fish. Res., 77(2):138-147.
Tuset V M, Lombarte A, Assis C A. 2008. Otolith atlas for the western Mediterranean, north and central eastern Atlantic.Sci. Mar., 72(S1):7-198.
Tuset V M, Lozano I J, González J A, Pertusa J F, García-Díaz M M. 2003. Shape indices to identify regional differences in otolith morphology of comber, Serranus cabrilla (L., 1758). J. Appl. Ichthyol., 19(2):88-93.
Vignon M, Morat F. 2010. Environmental and genetic determinant of otolith shape revealed by a non-indigenous tropical fish. Mar. Ecol. Prog. Ser., 411:231-241.
Xu D D, Lou B, Shi H L, Geng Z, Li S L, Zhang Y R. 2012.Genetic diversity and population structure of Nibea albiflora in the China Sea revealed by mitochondrial COI sequences. Biochem. Syst. Ecol., 45:158-165.
Zhang C, Fan Y N, Ye Z J, Li Z G, Yu H L. 2017. Identification of five Pampus species from the coast of China based on sagittal otolith morphology analysis. Acta Oceanol. Sin., 36(2):51-56.
Zhang C, Ye Z J, Li Z G, Wan R, Ren Y P, Dou S Z. 2016.Population structure of Japanese Spanish mackerel Scomberomorus niphonius in the Bohai Sea, the Yellow Sea and the East China Sea:evidence from random forests based on otolith features. Fish. Sci., 82(2):251-256.
Zhang W T, Dong W. 2004. Advanced Tutorial for Statistical Analysis Using SPSS. High Education Press, Beijing.p.263. (in Chinese)
Copyright © Haiyang Xuebao