Cite this paper:
HAN Xiaolin, LIU Ping, GAO Baoquan, WANG Haofeng, DUAN Yafei, XU Wenfei, CHEN Ping. Na+/K+-ATPase α-subunit in swimming crab Portunus trituberculatus : molecular cloning, characterization, and expression under low salinity stress[J]. Journal of Oceanology and Limnology, 2015, 33(4): 828-837

Na+/K+-ATPase α-subunit in swimming crab Portunus trituberculatus : molecular cloning, characterization, and expression under low salinity stress

HAN Xiaolin1,2, LIU Ping1, GAO Baoquan1, WANG Haofeng1, DUAN Yafei1, XU Wenfei1,2, CHEN Ping1
1 Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China;
2 Dalian Ocean University, Dalian 116023, China
Abstract:
Na+/K+-ATPases are membrane-associated enzymes responsible for the active transport of Na+ and K+ ions across cell membranes, generating chemical and electrical gradients. These enzymes' α-subunit provides catalytic function, binding and hydrolyzing ATP, and itself becoming phosphorylated during the transport cycle. In this study, Na+/K+-ATPase α-subunit cDNA was cloned from gill tissue of the swimming crab Portunus trituberculatus by reverse-transcription polymerase chain reaction (RT-PCR) and rapid amplification of cDNA end methods. Analysis of the nucleotide sequence revealed that the cDNA had a full-length of 3 833 base pairs (bp), with an open reading frame of 3 120 bp, 5' untranslated region (UTR) of 317 bp, and 3' UTR of 396 bp. The sequence encoded a 1 039 amino acid protein with a predicted molecular weight of 115.57 kDa and with estimated pI of 5.21. It was predicted here to possess all expected features of Na+/K+-ATPase members, including eight transmembrane domains, putative ATP-binding site, and phosphorylation site. Comparison of amino acid sequences showed that the P. trituberculatus α-subunit possessed an overall identity of 75%-99% to that of other organisms. Phylogenetic analysis revealed that this α-subunit was in the same category as those of crustaceans. Quantitative real-time RT-PCR analysis indicated that this α-subunit's transcript were most highly expressed in gill and lowest in muscle. RT-PCR analysis also revealed that α-subunit expression in crab gill decreased after 2 and 6 h, but increased after 12, 24, 48, and 72 h. In addition, α-subunit expression in hepatopancreas of crab decreased after 2-72 h. These facts indicated that the crab's Na+/K+-ATPase α-subunit was potentially involved in the observed acute response to low salinity stress.
Key words:    cloning|expression|Na+/K+-ATPase|α-subunit|Portunus trituberculatus|salinity   
Received: 2014-02-20   Revised: 2014-11-24
Tools
PDF ( KB) Free
Print this page
Add to favorites
Email this article to others
Authors
Articles by HAN Xiaolin
Articles by LIU Ping
Articles by GAO Baoquan
Articles by WANG Haofeng
Articles by DUAN Yafei
Articles by XU Wenfei
Articles by CHEN Ping
References:
Altschul S F, Gish W, Miller W, Myers E W, Lipman D J. 1990. Basic local alignment search tool. J. Mol. Biol., 215 (3): 403-410.
Axelsen K B, Palmgren M G. 1998. Evolution of substrate specificities in the P-type ATPase superfamily. J. Mol. Evol., 46 (1): 84-101.
Bachère E, Chagot D, Grizel H. 1988. Separation of Crassostrea gigas hemocytes by density gradient centrifugation and counterflow centrifugal elutriation. Dev. Comp. Immunol., 12 (3): 549-559.
Baxter-Lowe L A, Guo J Z, Bergstrom E E, Hokin L E. 1989. Molecular cloning of the Na, K-ATPase α-subunit in developing brine shrimp and sequence comparison with higher organisms. FEBS Lett., 257 (1): 181-187.
Béguin P, Wang X Y, Firsov D, Puoti A, Claeys D, Horisberger J D, Geering K. 1997. The γ subunit is a specific component of the Na, K-ATPase and modulates its transport function. Embo J., 16 (14): 4 250-4 260.
Choi C Y, An K W. 2008. Cloning and expression of Na+/K+- ATPase and osmotic stress transcription factor 1 mRNA in black porgy, Acanthopagrus schlegeli during osmotic stress. Comp. Biochem. Physiol. Part B : Biochem. Mol. Biol., 149 (1): 91-100.
Cooper A R, Morris S. 1997. Osmotic and ionic regulation by Leptograpsus variegatus during hyposaline exposure and in response to emersion. J. Exp. Mar. Biol. Ecol., 214 (1- 2): 263-282.
Corotto F S, Holliday C W. 1996. Branchial Na, K-ATPase and osmoregulation in the purple shore crab Hemigrapsus nudus (Dana). Comp. Biochem. Physiol., 113A (4): 361- 368.
Cutler C P, Sanders I L, Hazon N, Cramb G. 1995. Primary sequence, tissue specificity and expression of the Na+, K+- ATPase α 1 subunit in the European eel (Anguilla anguilla). Comp. Biochem. Physiol. B : Biochem. Mol. Biol., 111 (4): 567-573.
Deane E E, Woo N Y S. 2005. Cloning and characterization of sea bream Na+-K+-ATPase α and β subunit genes: in vitro effects of hormones on transcriptional and translational expression. Biochem. Biophys. Res. Commun., 331 (4): 1 229-1 238.
Fagan M J, Saier M H Jr. 1994. P-type ATPases of eukaryotes and bacteria: sequence analyses and construction of phylogenetic trees. J. Mol. Evol., 38 (1): 57-99.
Feng S Y, Zhao F, Zhuang P, Zhang L Z. 2012. Preliminary studies on molecular mechanism of salinity regulation of Na+, K+-ATPase α-subunit in gills of juvenile Chinese sturgeon (Acipenser sinensis). J. Fish. Chin., 36 (9): 1 386-1 391. (in Chinese with English abstract)
Geering K. 1990. Subunit assembly and functional maturation of Na, K-ATPase. J. Membr. Biol., 115 (2): 109-121.
Geering K, Beggah A, Good P, Girardet S, Roy S, Schaer D, Jaunin P. 1996. Oligomerization and maturation of Na, K-ATPase: functional interaction of the cytoplasmic NH2 terminus of the beta subunit with the alpha subunit. J. Cell Biol., 133 (6): 1 193-1 204.
Harasywych M G, Adamkewicz S L, Blake J A, Suadek D, Spriggs T, Bolt C J. 1997. Phylogeny and relationships of pleurotomariid gastropods (Mollusca: Gastropoda): an assessment based on partial 18S rDNA and cytochrome c oxidase I sequences. Mol. Mar. Biol. Biotechnol., 6 (1): 1-20.
Horisberger J D, Lemas V, Kraehenbuhl J P, Rossier B C. 1991. Structure-function relationship of Na, K-ATPase. Annu. Rev. Physiol., 53 (1): 565-584.
Huong D T T, Jasmani S, Jayasankar V, Wilder M. 2010. Na/KATPase activity and osmo-ionic regulation in adult whiteleg shrimp Litopenaeus vannamei exposed to low salinities. Aquaculture, 304 (1-4): 88-94.
Jayasundara N, Towle D W, Weihrauch D, Spanings-Pierrot C. 2007. Gill-specific transcriptional regulation of Na+/K+- ATPase α-subunit in the euryhaline shore crab Pachygrapsus marmoratus : sequence variants and promoter structure. J. Exp. Biol., 210 (Pt 12): 2 070-2 081.
Jiang S, Xu Q H. 2011. Influence of salinity stress on the activity of gill Na+/K+-ATPase in swimming crab (Portunus trituberculatus). J. Fish. Chin., 35 (10): 1 475- 1 480. (in Chinese with English abstract)
Jørgensen P L, Andersen J P. 1988. Structural basis for E1 -E2 conformational transitions in Na, K-pump and Ca-pump proteins. J. Membr. Biol., 103 (2): 95-120.
Kinne O. 1971. Salinity: Animal invertebrates. In : Kinne O ed. Marine Ecology Vol. 1: Environmental Factors. Wiley Interscience, London, UK. p.821-995.
Lingrel J B, Kuntzweiler T. 1994. Na+/K+-ATPase. J. Biol. Chem., 269 (31): 19 659-19 662.
Liu Z S, Liu Z. 2008. China Fisheries Yearbook 2008. Beijing: Chinese Agriculture Express. (in Chinese)
Livak K J, Schmittgen T D. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2 -ΔΔC T method. Methods, 25 (4): 402-408.
Lu Y L, Wang F, Zhao Z Y, Dong S L, Ma S. 2012. Effects of salinity on growth, molt and energy utilization of juvenile swimming crab Portunus trituberculatus. J. Fish. Sci. Chin., 19 (2): 237-245. (in Chinese)
Lucu Č, Towle D W. 2003. Na++K+-ATPase in gills of aquatic crustacean. Comp. Biochem. Physiol. A : Mol. Integr. Physiol., 135 (2): 195-214.
Mercer R W. 1993. Structure of the Na, K-ATPase. Int. Rev. Cytol., 137 C : 139-168.
Mitsunaga-Nakatsubo K, Yamazaki K, Hatoh-Okazaki M, Kawashita H, Okamura C, Akasaka K, Shimada H, Yasumasu I. 1996. cDNA cloning of NA+, K+-ATPase α-subunit from embryos of the sea urchin, Hemicentrous pulcherrimus. Zool Sci., 13 (6): 833-841.
Nilsen T O, Ebbesson L O E, Madsen S S, McCormick S D, Andersson E, Björnsson B T, Prunet P, Stefansson S O. 2007. Differential expression of gill Na+, K+-ATPase α- and β-subunits, Na+, K+, 2Cl- cotransporter and CFTR anion channel in juvenile anadromous and landlocked Atlantic salmon Salmo salar. J. Exp. Biol., 210 (16): 2 885-2 896.
Palmgren M G, Axelsen K B. 1998. Evolution of P-type ATPases. Biochim. Biophys. Acta, 1365 (1-2): 37-45.
Pan L Q, Yue F, Miao J J, Zhang L, Li J. 2010. Molecular cloning and characterization of a novel c-type lysozyme gene in swimming crab Portunus trituberculatus. Fish. Shellfish Immunol., 29 (2): 286-292.
Péqueux A. 1995. Osmotic regulation in crustaceans. J. Crust. Biol., 15 (1): 1-60.
Semple J W, Green H J, Schulte P M. 2002. Molecular cloning and characterization of two Na/K-ATPase isoforms in Fundulus heteroclitus. Marine Biotechnology, 4 (5): 512- 519.
Serrano R. 1988. Structure and function of proton translocating ATPase in plasma membranes of plants and fungi. Biochim. Biophys. Acta, 947 (1): l-28.
Shull G E, Lane L K, Lingrel J B. 1986. Amino-acid sequence of the β -subunit of the (Na++K+)ATPase deduced from a cDNA. Nature, 321 (6068): 429-431.
Shull G E, Schwartz A, Lingrel J B. 1985. Amino-acid sequence of the catalytic subunit of the (Na++K+)ATPase deduced from a complementary DNA. Nature, 316 (6030): 691-695.
Sun H Y, Zhang L P, Ren C H, Chen C, Fan S G, Xia J J, Lin H J, Hu C Q. 2011. The expression of Na, K-ATPase in Litopenaeus vannamei under salinity stress. Mar. Biol. Res., 7 (6): 623-628.
Tamura K, Dudley J, Nei M, Kumar S. 2007. MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Mol. Biol. Evol., 24 (8): 1 596-1 599.
Tang C H, Chang I C, Chen C H, Lee T H, Hwang P P. 2008. Phenotypic changes in mitochondrion-rich cells and responses of Na+/K+-ATPase in gills of tilapia exposed to deionized water. Zool Sci., 25 (2): 205-211.
Thompson J D, Higgins D G, Gibson T J. 1994. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucl. Acids Res., 22 (22): 4 673-4 680.
Towle D W. 1981. Role of Na+-K+-ATPase in ionic regulation by marine and estuarine animals. Mar. Biol. Lett., 2 : 107- 122.
Towle D W. 1990. Sodium transport systems in gills. In : Kinne R K H ed. Comparative Aspects of Sodium Cotransport Systems. 1st edn. Karger Publishing, Basel, USA. p.241- 263.
Towle D W. 1993. Ion transport systems in membrane vesicles isolated from crustacean tissues. J. Exp. Zool., 265 (4): 387-396.
Towle D W. 1997. Molecular approaches to understanding salinity adaptation of estuarine animals. Am. Zool., 37 (6): 575-584.
Towle D W, Paulsen R S, Weihrauch D, Kordylewski M, Salvador C, Lignot J H and Spanings-Pierrot C. 2001. Na++K+-ATPase in gills of the blue crab Callinectes sapidus : cDNA sequencing and salinity-related expression of α-subunit mRNA and protein. J. Exp. Biol., 204 : 4 005- 4 012.
Willms K, Shoemaker C B, Skelly P J, Landa A. 2004. Cloning and expression of a Na+, K+-ATPase α-subunit from Taenia solium (TNaK1α). Mol. Biochem. Parasitol., 138 (1): 79-82.
Wong M, Medrano J. 2005. Real-time PCR for mRNA quantitation. Biotechniques, 39 (1): 75-85.
Copyright © Haiyang Xuebao