Cite this paper:
ZENG Zhigang, CHEN Zuxing, ZHANG Yuxiang, LI Xiaohui. Geological, physical, and chemical characteristics of seafloor hydrothermal vent fields[J]. Journal of Oceanology and Limnology, 2020, 38(4): 985-1007

Geological, physical, and chemical characteristics of seafloor hydrothermal vent fields

ZENG Zhigang1,2,3,4, CHEN Zuxing1,4, ZHANG Yuxiang1,4, LI Xiaohui1,4
1 Seafloor Hydrothermal Activity Laboratory, CAS Key Laboratory of Marine Geology and Environment, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China;
2 Laboratory for Marine Mineral Resources, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266061, China;
3 University of Chinese Academy of Sciences, Beijing 100049, China;
4 Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
Abstract:
Seafloor hydrothermal vent fields (SHVFs) are located in the mid-ocean ridge (MOR), backarc basin (BAB), island arc and hot-spot environments and hosted mainly by ultramafic, mafic, felsic rocks, and sediments. The hydrothermal vent fluids of SHVFs have low oxygen, abnormal pH and temperature, numerous toxic compounds, and inorganic energy sources, such as sulfuric compounds, methane, and hydrogen. The geological, physical, and chemical characteristics of SHVFs provide important clues to understanding the formation and evolution of seafloor hydrothermal systems, leading to the determination of metal sources and the reconstruction of the physicochemical conditions of metallogenesis. Over the past two decades, we studied the geological settings, volcanic rocks, and hydrothermal products of SHVFs and drawn new conclusions in these areas, including:1) the hydrothermal plumes in the Okinawa Trough are affected by the Kuroshio current; 2) S and Pb in the hydrothermal sulfides from MOR are mainly derived from their host igneous rocks; 3) Re and Os of vent fluids are more likely to be incorporated into Fe- and Fe-Cu sulfide mineral facies, and Os is enriched under low-temperature (<200℃) hydrothermal conditions in global SHVFs; 4) compared with low-temperature hydrothermal sulfides, sulfates, and opal minerals, high-temperature hydrothermal sulfides maintain the helium (He) isotopic composition of the primary vent fluid; 5) relatively low temperature (<116℃), oxygenated, and acidic environment conditions are favorable for forming a native sulfur chimney, and a "glue pudding" growth model can be used to understand the origin of native sulfur balls in the Kueishantao hydrothermal field; and 6) boron isotope from hydrothermal plumes and fluids can be used to describe their diffusive processes. The monitoring and understanding of the physical structure, chemical composition, geological processes, and diverse organism of subseafloor hydrothermal systems will be a future hot spot and frontier of submarine hydrothermal geology.
Key words:    vent fields|hydrothermal products|volcanic rocks|vent organisms|seafloor hydrothermal systems   
Received: 2020-03-15   Revised: 2020-04-21
Tools
PDF (1615 KB) Free
Print this page
Add to favorites
Email this article to others
Authors
Articles by ZENG Zhigang
Articles by CHEN Zuxing
Articles by ZHANG Yuxiang
Articles by LI Xiaohui
References:
Andrieu A S, Honnorez J J, Lancelot J. 1998. Lead isotope compositions of the TAG mineralization, Mid-Atlantic Ridge, 26°08'N. Proceeding of the Ocean Drilling Program, Scientific Results, 158: 101-109.
Binns R A, Scott S D. 1993. Actively forming polymetallic sulfide deposits associated with felsic volcanic rocks in the eastern Manus back-arc basin, Papua New Guinea.Economic Geology, 88(8): 2 226-2 236.
Bjerkgård T, Cousens B L, Franklin J M. 2000. The Middle Valley sulfide deposits, northern Juan de Fuca Ridge:radiogenic isotope systematics. Economic Geology, 95(7): 1 473-1 488.
Brévart O, Dupré B, Allègre C J. 1981. Metallogenesis at spreading centers: lead isotope systematics for sulfides, manganese-rich crusts, basalts, and sediments from the Cyamex and Alvin areas (East Pacific Rise). Economic Geology, 76(5): 1 205-1 210.
Charlou J L, Bougault H, Appriou P, Jean-Baptiste P, Etoubleau J, Birolleau A. 1991. Water column anomalies associated with hydrothermal activity between 11°40' and 13°N on the East Pacific Rise: discrepancies between tracers. Deep Sea Research Part A. Oceanographic Research Papers, 38(5): 569-596.
Charlou J L, Donval J P, Fouquet Y, Jean-Baptiste P, Holm N. 2002. Geochemistry of high H2 and CH4 vent fluids issuing from ultramafic rocks at the Rainbow hydrothermal field (36°14'N, MAR). Chemical Geology, 191(4): 345-359.
Chen C T A, Wang B J, Huang J F, Lou J, Kuo F W, Tu Y, Tsai H. 2005b. Investigation into extremely acidic hydrothermal fluids off Kueishan Tao, Taiwan, China.Acta Oceanologica Sinica, 24(1): 125-133.
Chen C T A, Zeng Z G, Kuo F W, Yang T F, Wang B J, Tu YY. 2005a. Tide-influenced acidic hydrothermal system offshore NE Taiwan. Chemical Geology, 224(1-3): 69-81.
Chen Y G, Wu W S, Chen C H, Liu T K. 2001. A date for volcanic eruption inferred from a siltstone xenolith.Quaternary Science Reviews, 20(5-9): 869-873.
Chen Z X, Zeng Z G, Wang X Y, Yin X B, Chen S, Guo K, Lai Z Q, Zhang Y X, Ma Y, Qi H Y, Wu L. 2018. U-Th/He dating and chemical compositions of apatite in the dacite from the southwestern Okinawa Trough: implications for petrogenesis. Journal of Asian Earth Sciences, 161: 1-13.
Chen Z X, Zeng Z G, Yin X B, Wang X Y, Zhang Y Y, Chen S, Shu Y C, Guo K, Li X H. 2019. Petrogenesis of highly fractionated rhyolites in the southwestern Okinawa Trough: constraints from whole-rock geochemistry data and Sr-Nd-Pb-O isotopes. Geological Journal, 54(1):316-332.
Cousens B L, Blenkinsop J, Franklin J M. 2002. Lead isotope systematics of sulfide minerals in the Middle Valley hydrothermal system, northern Juan de Fuca Ridge.Geochemistry, Geophysics, Geosystems, 3(5): 1-16.
DeMets C, Gordon R G, Argus D F, Stein S. 1994. Effect of recent revisions to the geomagnetic reversal time scale on estimates of current plate motions. Geophysical Research Letters, 21(20): 2 191-2 194.
Douville É, Charlou J L, Donval J P, Hureau D, Appriou P. 1999. Le comportement de l'arsenic (As) et de l'antimoine(Sb) dans les fluides provenant de différents systèmes hydrothermaux océaniquesAs and Sb behaviour in fluids from various deep-sea hydrothermal systems. Comptes Rendus de l'Académie des Sciences-Series ⅡA-Earth and Planetary Science, 328(2): 97-104.
Edwards K J, Glazer B T, Rouxel O J, Bach W, Emerson D, Davis R E, Toner B M, Chan C S, Tebo B M, Staudigel H, Moyer C L. 2011. Ultra-diffuse hydrothermal venting supports Fe-oxidizing bacteria and massive umber deposition at 5000 m off Hawaii. ISME Journal, 5(11):1748-1758.
Eissen J P, Nohara M, Cotten J, Hirose K. 1994. North Fiji Basin basalts and their magma sources: part I. Incompatible element constraints. Marine Geology, 116(1-2): 153-178.
Emerson D, Moyer C L. 2002. Neutrophilic Fe-oxidizing bacteria are abundant at the Loihi Seamount hydrothermal vents and play a major role in Fe oxide deposition. Applied and Environmental Microbiology, 68(6): 3 085-3 093.
Fouquet Y, Knott R, Cambon P, Fallick A, Rickard D, Desbruyeres D. 1996. Formation of large sulfide mineral deposits along fast spreading ridges. Example from offaxial deposits at 12°43'N on the East Pacific Rise. Earth and Planetary Science Letters, 144(1-2): 147-162.
Fouquet Y, Marcoux E. 1995. Lead isotope systematics in Pacific hydrothermal sulfide deposits. Journal of Geophysical Research: Solid Earth, 100(B4): 6 025-6 040.
Fouquet Y, Von Stackelberg U, Charlou J L, Donval J P, Erzinger J, Foucher J P, Herzig P, Mühe R, Soakai S, Wiedicke M, Whitechurch H. 1991. Hydrothermal activity and metallogenesis in the Lau back-arc basin. Nature, 349(6312): 778-781.
Gamo T, Okamura K, Charlou J L, Urabe T, Auzende J M, Ishibashi J, Shitashima K, Chiba H. 1997. Acidic and sulfate-rich hydrothermal fluids from the Manus back-arc basin, Papua New Guinea. Geology, 25(2): 139-142.
Gannoun A, Burton K W, Parkinson I J, Alard O, Schiano P, Thomas L E. 2007. The scale and origin of the osmium isotope variations in mid-ocean ridge basalts. Earth and Planetary Science Letters, 259(3-4): 541-556.
Gena K, Mizuta T, Ishiyama D, Urabe T. 2001. Acid-sulphate type alteration and mineralization in the DESMOS Caldera, Manus back-arc basin, Papua New Guinea.Resource Geology, 51(1): 31-44.
Gente P, Auzende J M, Renard V, Fouquet Y, Bideau D. 1986.Detailed geological mapping by submersible of the East Pacific Rise axial graben near 13°N. Earth and Planetary Science Letters, 78(2-3): 224-236.
Glasby G P, Notsu K. 2003. Submarine hydrothermal mineralization in the Okinawa Trough, SW of Japan: an overview. Ore Geology Reviews, 23(3-4): 299-339.
Goodfellow W D, Franklin J M. 1993. Geology, mineralogy, and chemistry of sediment-hosted clastic massive sulfides in shallow cores, Middle Valley, northern Juan de Fuca Ridge. Economic Geology, 88(8): 2 037-2 068.
Guo K, Zeng Z G, Chen S, Zhang Y X, Qi H Y, Ma Y. 2017.The influence of a subduction component on magmatism in the Okinawa Trough: evidence from thorium and related trace element ratios. Journal of Asian Earth Sciences, 145: 205-216.
Guo K, Zhai S K, Wang X Y, Yu Z H, Lai Z Q, Chen S, Song Z J, Ma Y, Chen Z X, Li X H, Zeng Z G. 2018. The dynamics of the southern Okinawa Trough magmatic system: new insights from the microanalysis of the An contents, trace element concentrations and Sr isotopic compositions of plagioclase hosted in basalts and silicic rocks. Chemical Geology, 497: 146-161.
Halbach P, Hansmann W, Köppel V, Pracejus B. 1997. Wholerock and sulfide lead-isotope data from the hydrothermal JADE field in the Okinawa back-arc trough. Mineralium Deposita, 32: 70-78.
Halbach P, Nakamura K, Wahsner M, Lange J, Sakai H, Käselitz L, Hansen R D, Yamano M, Post J, Prause B, Seifert R, Michaelis W, Teichmann F, Kinoshita M, Märten A, Ishibashi J, Czerwinski S, Blum N. 1989.Probable modern analogue of Kuroko-type massive sulphide deposits in the Okinawa Trough back-arc basin.Nature, 338(6215): 496-499.
Hannington M D, de Ronde C E J, Petersen S. 2005. Sea-floor tectonics and submarine hydrothermal systems. In:Economic Geology, 100th Anniversary Volume. Society of Economic Geologists Inc., Littleton, CO. p.111-114.
Harvey J, Gannoun A, Burton K W, Rogers N W, Alard O, Parkinson I J. 2006. Ancient melt extraction from the oceanic upper mantle revealed by Re-Os isotopes in abyssal peridotites from the Mid-Atlantic ridge. Earth and Planetary Science Letters, 244(3-4): 606-621.
Hegner E, Tatsumoto M. 1987. Pb, Sr, and Nd isotopes in basalts and sulfides from the Juan de Fuca Ridge. Journal of Geophysical Research: Solid Earth, 92(B11): 11 380-11 386.
Hékinian R, Francheteau J, Renard V, Ballard R D, Choukroune P, Cheminee J L, Albarede F, Minster J F, Charlou J L, Marty J C, Boulegue J. 1983. Intense hydrothermal activity at the axis of the East Pacific Rise near 13°N:sumbersible witnesses the growth of sulfide chimney.Marine Geophysical Research, 6: 1-14.
Hrischeva E, Scott S D, Weston R. 2007. Metalliferous sediments associated with presently forming volcanogenic massive sulfides: the SuSu knolls hydrothermal field, Eastern Manus Basin, Papua New Guinea. Economic Geology, 102(1): 55-73.
Huang P, Li A C, Hu N J, Fu Y T, Ma Z B. 2006. Isotopic feature and uranium dating of the volcanic rocks in the Okinawa Trough. Science in China Series D, 49(4): 375-383.
Huang X, Chen S, Zeng Z G, Pu X Q, Hou Q H. 2017a. The influence of seafloor hydrothermal activity on major and trace elements of the sediments from the South MidAtlantic Ridge. Journal of Ocean University of China, 16(5): 775-780, https://doi.org/10.1007/s11802-017-3311-y.
Huang X, Chen S, Zeng Z G, Pu X Q, Hou Q H. 2017b.Characteristics of hydrocarbons in sediment core samples from the northern Okinawa Trough. Marine Pollution Bulletin, 115(1-2): 507-514.
Huang X, Zeng Z G, Chen S, Yin X B, Wang X Y, Ma Y, Yang B J, Rong G B, Shu Y C, Jiang T. 2014. Component characteristics of polycyclic aromatic compounds in sediments of the South Mid-Atlantic Ridge. Acta Oceanologica Sinica, 33(11): 150-154.
Huang X, Zeng Z G, Chen S, Yin X B, Wang X Y, Zhao H J, Yang B J, Rong K B, Ma Y. 2013. Component characteristics of organic matter in hydrothermal barnacle shells from Southwest Indian Ridge. Acta Oceanologica Sinica, 32(12): 60-67.
Humphris S E, Klein F. 2018. Progress in deciphering the controls on the geochemistry of fluids in seafloor hydrothermal systems. Annual Review of Marine Science, 10: 315-343.
Ishibashi J I, Ikegami F, Tsuji T, Urabe T. 2015. Hydrothermal activity in the Okinawa Trough back-arc basin: geological background and hydrothermal mineralization. In:Ishibashi J I, Okino K, Sunamura M eds. Subseafloor Biosphere Linked to Hydrothermal Systems: TAIGA Concept. Springer, Tokyo. p.337-359, https://doi.org/10.1007/978-4-431-54865-2_27.
Kim J, Lee I, Halbach P, Lee K Y, Ko Y T, Kim K H. 2006.Formation of hydrothermal vents in the North Fiji Basin:sulfur and lead isotope constraints. Chemical Geology, 233(3-4): 257-275.
Kim J, Lee I, Lee K Y. 2004. S, Sr, and Pb isotopic systematics of hydrothermal chimney precipitates from the Eastern Manus Basin, western Pacific: evaluation of magmatic contribution to hydrothermal system. Journal of Geophysical Research: Solid Earth, 109(B12): B12210, https://doi.org/10.1029/2003JB002912.
Kishida K, Sohrin Y, Okamura K, Ishibashi J I. 2004. Tungsten enriched in submarine hydrothermal fluids. Earth and Planetary Science Letters, 222(3-4): 819-827.
Koschinsky A, Seifert R, Halbach P, Bau M, Brasse S, de Carvalho L M, Fonseca N M. 2002. Geochemistry of diffuse low-temperature hydrothermal fluids in the North Fiji Basin. Geochimica et Cosmochimica Acta, 66(8):1 409-1 427.
Kuo F W. 2001. Preliminary Investigation of Shallow Hydrothermal Vents on Kueishantao Islet of Northeastern Taiwan. Institute of Marine Geology and Chemistry, National Sun Yat-Sen University, Kaohsiung, Taiwan. 81 pp. (in Chinese).
Kusakabe M, Mayeda S, Nakamura E. 1990. S, O and Sr isotope systematics of active vent materials from the Mariana backarc basin spreading axis at 18°N. Earth and Planetary Science Letters, 100(1-3): 275-282.
LeHuray A P, Church S E, Koski R A, Bouse R M. 1988. Pb isotopes in sulfides from mid-ocean ridge hydrothermal sites. Geology, 16(4): 362-365.
Lein A Y, Peresypkin V I, Simoneit B R T. 2003. Origin of hydrocarbons in hydrothermal sulfide ores in the MidAtlantic Ridge. Lithology and Mineral Resources, 38(5):383-393.
Liang W D, Tang T Y, Yang Y J, Ko M T, Chuang W S. 2003.Upper-ocean currents around Taiwan. Deep Sea Research Part Ⅱ: Topical Studies in Oceanography, 50(6-7): 1 085-1 105.
Liao S L, Tao C H, Zhu C W, Li H M, Li X H, Liang J, Yang W F, Wang Y J. 2019. Two episodes of sulfide mineralization at the Yuhuang-1 hydrothermal field on the Southwest Indian Ridge: insight from Zn isotopes. Chemical Geology, 507: 54-63.
Metz S, Trefry J H. 2000. Chemical and mineralogical influences on concentrations of trace metals in hydrothermal fluids. Geochimica et Cosmochimica Acta, 64(13): 2 267-2 279.
Mills R A, Elderfield H. 1995. Rare earth element geochemistry of hydrothermal deposits from the active TAG mound, 26°N Mid-Atlantic Ridge. Geochimica et Cosmochimica Acta, 59(17): 3 511-3 524, https://doi.org/10.1016/0016-7037(95)00224-N.
Muller M R, Minshull T A, White R S. 1999. Segmentation and melt supply at the Southwest Indian Ridge. Geology, 27(10): 867-870.
Nakamura K, Morishita T, Bach W, Klein F, Hara K, Okino K, Takai K, Kumagai H. 2009. Serpentinized troctolites exposed near the Kairei Hydrothermal Field, Central Indian Ridge: insights into the origin of the Kairei hydrothermal fluid supporting a unique microbial ecosystem. Earth and Planetary Science Letters, 280(1-4): 128-136.
Nohara M, Hirose K, Eissen J P, Urabe T, Joshima M. 1994.The North Fiji Basin basalts and their magma sources:part Ⅱ. Sr-Nd isotopic and trace element constraints.Marine Geology, 116(1-2): 179-195.
Park S H, Lee S M, Kamenov G D, Kwon S T, Lee K Y. 2010.Tracing the origin of subduction components beneath the South East rift in the Manus Basin, Papua New Guinea.Chemical Geology, 269(3-4): 339-349.
Petersen S, Herzig P M, Kuhn T, Franz L, Hannington M D, Monecke T, Gemmell J B. 2005. Shallow drilling of seafloor hydrothermal systems using the BGS rockdrill:conical seamount (New Ireland fore-arc) and PACMANUS (Eastern Manus Basin), Papua New Guinea. Marine Georesources & Geotechnology, 23(3): 175-193.
Petersen S, Kuhn K, Kuhn T, Augustin N, Hékinian R, Franz L, Borowski C. 2009. The geological setting of the ultramafic-hosted Logatchev hydrothermal field (14°45'N, Mid-Atlantic Ridge) and its influence on massive sulfide formation. Lithos, 112(1-2): 40-56.
Petersen S, Monecke T, Westhues A, Hannington M D, Gemmell J B, Sharpe R, Peters M, Strauss H, Lackschewitz K, Augustin N, Gibson H, Kleeberg R. 2014. Drilling shallow-water massive sulfides at the Palinuro volcanic complex, Aeolian island arc, Italy. Economic Geology, 109(8): 2 129-2 158.
Peucker-Ehrenbrink B, Ravizza G. 2000. The marine osmium isotope record. Terra Nova, 12(5): 205-219.
Pichler T, Veizer J. 1999. Precipitation of Fe(Ⅲ) oxyhydroxide deposits from shallow-water hydrothermal fluids in Tutum Bay, Ambitle Island, Papua New Guinea. Chemical Geology, 162(1): 15-31.
Rees C E, Jenkins W J, Monster J. 1978. The sulphur isotopic composition of ocean water sulphate. Geochimica et Cosmochimica Acta, 42(4): 377-381.
Rong K B, Zeng Z G, Yin X B, Chen S, Wang X Y, Qi H Y, Ma Y. 2018. Smectite formation in metalliferous sediments near the East Pacific Rise at 13°N. Acta Oceanologica Sinica, 37(9): 67-81.
Rouxel O, Fouquet Y, Ludden J N. 2004. Copper isotope systematics of the Lucky Strike, Rainbow, and Logatchev sea-floor hydrothermal fields on the Mid-Atlantic Ridge.Economic Geology, 99(3): 585-600.
Rouxel O, Shanks Ⅲ W C, Bach W, Edwards K J. 2008.Integrated Fe- and S-isotope study of seafloor hydrothermal vents at East Pacific rise 9-10°N. Chemical Geology, 252(3-4): 214-227.
Sakai H, Des Marais D, Ueda A, Moore J G. 1984.Concentrations and isotope ratios of carbon, nitrogen and sulfur in ocean-floor basalts. Geochimica et Cosmochimica Acta, 48(12): 2 433-2 441.
Schiano P, Birck J L, Allègre C J. 1997. Osmium-strontiumneodymium-lead isotopic covariations in mid-ocean ridge basalt glasses and the heterogeneity of the upper mantle.Earth and Planetary Science Letters, 150(3-4): 363-379.
Seyfried Jr W E, Pester N J, Tutolo B M, Ding K. 2015. The Lost City hydrothermal system: constraints imposed by vent fluid chemistry and reaction path models on subseafloor heat and mass transfer processes. Geochimica et Cosmochimica Acta, 163: 59-79.
Shanks Ⅲ W C, Seyfried Jr W E. 1987. Stable isotope studies of vent fluids and chimney minerals, southern Juan de Fuca Ridge: sodium metasomatism and seawater sulfate reduction. Journal of Geophysical Research: Solid Earth, 92(B11): 11 387-11 399.
Sharma M, Rosenberg E J, Butterfield D A. 2007. Search for the proverbial mantle osmium sources to the oceans:hydrothermal alteration of mid-ocean ridge basalt.Geochimica et Cosmochimica Acta, 71(19): 4 655-4 667.
Sharma M, Wasserburg G J, Hofmann A W, Butterfield D A. 2000. Osmium isotopes in hydrothermal fluids from the Juan de Fuca Ridge. Earth and Planetary Science Letters, 179(1): 139-152.
Shinjo R, Kato Y. 2000. Geochemical constraints on the origin of bimodal magmatism at the Okinawa Trough, an incipient back-arc basin. Lithos, 54(3-4): 117-137.
Shu Y C, Nielsen S, Zeng Z G, Shinjo R, Blusztajn J, Wang X Y, Chen S. 2017. Tracing subducted sediment inputs to the Ryukyu arc-Okinawa Trough system: evidence from thallium isotopes. Geochimica et Cosmochimica Acta, 217: 462-491, https://doi.org/10.1016/j.gca.2017.08.035.
Sibuet J C, Deffontaines B, Hsu S K, Thareau N, Le Formal J P, Liu C SParty. 1998. Okinawa Trough backarc basin:early tectonic and magmatic evolution. Journal of Geophysical Research: Solid Earth, 103(B12): 30 245-30 267.
Simoneit B R T, Lein A Y, Peresypkin V I, Osipov G A. 2004.Composition and origin of hydrothermal petroleum and associated lipids in the sulfide deposits of the Rainbow Field (Mid-Atlantic Ridge at 36°N). Geochimica et Cosmochimica Acta, 68 (10): 2 275-2 294.
Sinton J M, Ford L L, Chappell B, McCulloch M T. 2003.Magma genesis and mantle heterogeneity in the Manus back-arc basin, Papua New Guinea. Journal of Petrology, 44(1): 159-195.
Snow J E, Reisberg L. 1995. Os isotopic systematics of the MORB mantle: results from altered abyssal peridotites.Earth and Planetary Science Letters, 133(3-4): 411-421.
Stuart F M, Ellam R M, Duckworth R C. 1999. Metal sources in the Middle Valley massive sulphide deposit, northern Juan de Fuca Ridge: Pb isotope constraints. Chemical Geology, 153(1-4): 213-225.
Suo Y H, Li S Z, Li X Y, Zhang Z, Ding D. 2017. The potential hydrothermal systems unexplored in the Southwest Indian Ocean. Marine Geophysical Research, 38(1-2): 61-70.
Suzuki R, Ishibashi J I, Nakaseama M, Konno U, Tsunogai U, Gena K, Chiba H. 2008. Diverse range of mineralization induced by phase separation of hydrothermal fluid: case study of the Yonaguni Knoll IV hydrothermal field in the Okinawa Trough Back-arc Basin. Resource Geology, 58(3): 267-288.
Tao C H, Li H M, Jin X B, Zhou J P, Wu T, He Y H, Deng X M, Gu C H, Zhang G Y, Liu W Y. 2014. Seafloor hydrothermal activity and polymetallic sulfide exploration on the southwest Indian ridge. Chinese Science Bulletin, 59(19): 2 266-2 276.
Tao C H, Seyfried Jr W E, Lowell R P, Liu Y L, Liang J, Guo Z K, Ding K, Zhang H T, Liu J, Qiu L, Egorov I, Liao S L, Zhao M H, Zhou J P, Deng X M, Li H M, Wang H C, Cai W, Zhang G Y, Zhou H W, Lin J, Li W. 2020. Deep hightemperature hydrothermal circulation in a detachment faulting system on the ultra-slow spreading ridge. Nature Communications, 11: 1300.
Tarasov V G, Gebruk A V, Mironov A N, Moskalev L I. 2005.Deep-sea and shallow-water hydrothermal vent communities: two different phenomena? Chemical Geology, 224(1-3): 5-39.
Tivey M K. 2007. Generation of seafloor hydrothermal vent fluids and associated mineral deposits. Oceanography, 20(1): 50-65.
Verati C, Lancelot J, Hékinian R. 1999. Pb isotope study of black-smokers and basalts from Pito Seamount site(Easter microplate). Chemical Geology, 155(1-2): 45-63.
Vidal P, Clauer N. 1981. Pb and Sr isotopic systematics of some basalts and sulfides from the East Pacific Rise at 21°N (project RITA). Earth and Planetary Science Letters, 55(2): 237-246.
Von Damm K L. 1995. Temporal and compositional diversity in seafloor hydrothermal fluids. Reviews of Geophysics, 33(S2): 1 297-1 305.
Wang X Y, Zeng Z G, Chen S, Yin X B, Chen C T A. 2013b.Rare earth elements in hydrothermal fluids from Kueishantao, off northeastern Taiwan: indicators of shallow-water, sub-seafloor hydrothermal processes.Chinese Science Bulletin, 58(32): 4 012-4 020, https://doi.org/10.1007/s11434-013-5849-4.
Wang X Y, Zhao H J, Zeng Z G, Yin X B, Chen S, Ma Y. 2013a. Characteristics of silicon and oxygen isotopic compositions of basalts near East Pacific Rise 13°N. Acta Oceanologica Sinica, 32(12): 104-108.
Woodruff L G, Shanks Ⅲ W C. 1988. Sulfur isotope study of chimney minerals and vent fluids from 21°N, East Pacific Rise: hydrothermal sulfur sources and disequilibrium sulfate reduction. Journal of Geophysical Research: Solid Earth, 93(B5): 4 562-4 572.
Yamano M, Uyeda S, Foucher J P, Sibuet J C. 1989. Heat flow anomaly in the middle Okinawa Trough. Tectonophysics, 159(3-4): 307-318.
Yang B J, Zeng Z G, Qi H Y, Wang X Y, Ma Y, Rong K B. 2015. Constraints on biotic and abiotic role in the formation of Fe-Si oxides from the PACMANUS Hydrothermal Field. Ocean Science Journal, 50(4): 751-761.
Yao H Q, Zhou H Y, Peng X T, Bao S X, Wu Z J, Li J T, Sun Z L, Chen Z Q, Li J W, Chen G Q. 2009. Metal sources of black smoker chimneys, Endeavour Segment, Juan de Fuca Ridge: Pb isotope constraints. Applied Geochemistry, 24(10): 1 971-1 977.
Zeng Z G, Chen C T A, Yin X B, Zhang X Y, Wang X Y, Zhang G L, Wang X M, Chen D G. 2011. Origin of native sulfur ball from the Kueishantao hydrothermal field offshore northeast Taiwan: evidence from trace and rare earth element composition. Journal of Asian Earth Sciences, 40(2): 661-671.
Zeng Z G, Chen D G, Yin X B, Wang X Y, Zhang G L, Wang X M. 2010b. Elemental and isotopic compositions of the hydrothermal sulfide on the East Pacific Rise near 13°N.Science China Earth Sciences, 53(2): 253-266.
Zeng Z G, Chen S, Ma Y, Yin X B, Wang X Y, Zhang S P, Zhang J L, Wu X W, Li Y, Dong D, Xiao N. 2017a.Chemical compositions of mussels and clams from the Tangyin and Yonaguni Knoll IV hydrothermal fields in the southwestern Okinawa Trough. Ore Geology Reviews, 87:172-191, https://doi.org/10.1016/j.oregeorev.2016.09.015.
Zeng Z G, Chen S, Selby D, Yin X B, Wang X Y. 2014a.Rhenium-osmium abundance and isotopic compositions of massive sulfides from modern deep-sea hydrothermal systems: implications for vent associated ore forming processes. Earth and Planetary Science Letters, 396: 223-234.
Zeng Z G, Chen S, Wang X Y, Ouyang H G, Yin X B, Li Z X. 2012c. Mineralogical and micromorphological characteristics of Si-Fe-Mn oxyhydroxides from the PACMANUS hydrothermal field, Eastern Manus Basin.Science China Earth Sciences, 55(12): 2 039-2 048.
Zeng Z G, Jiang F Q, Zhai S K, Qin Y S. 2000. Lead isotopic compositions of massive sulfides from the Jade hydrothermal field in the Okinawa Trough and its geological implications. Geochimica, 29(3): 239-245. (in Chinese with English abstract)
Zeng Z G, Liu C H, Chen C T A, Yin Y B, Chen D G, Wang X Y, Wang X M, Zhang G L. 2007. Origin of a native sulfur chimney in the Kueishantao hydrothermal field, offshore northeast Taiwan. Science in China Series D: Earth Sciences, 50(11): 1 746-1 753.
Zeng Z G, Ma Y, Chen S, Selby D, Wang X Y, Yin X B. 2017b.Sulfur and lead isotopic compositions of massive sulfides from deep-sea hydrothermal systems: implications for ore genesis and fluid circulation. Ore Geology Reviews, 87:155-171, https://doi.org/10.1016/j.oregeorev.2016.10.014.
Zeng Z G, Ma Y, Wang X Y, Chen C T A, Yin X B, Zhang S P, Zhang J L, Jiang W. 2018c. Elemental compositions of crab and snail shells from the Kueishantao hydrothermal field in the southwestern Okinawa Trough. Journal of Marine Systems, 180: 90-101, https://doi.org/10.1016/j.jmarsys.2016.08.012.
Zeng Z G, Ma Y, Yin X B, Selby D, Kong F C, Chen S. 2015b.Factors affecting the rare earth element compositions in massive sulfides from deep-sea hydrothermal systems.Geochemistry, Geophysics, Geosystems, 16(8): 2 679-2 693, https://doi.org/10.1002/2015GC005812.
Zeng Z G, Niedermann S, Chen S, Wang X Y, Li Z X. 2015a.Noble gases in sulfide deposits of modern deep-sea hydrothermal systems: implications for heat fluxes and hydrothermal fluid processes. Chemical Geology, 409:1-11.
Zeng Z G, Ouyang H G, Yin X B, Chen S, Wang X Y, Wu L. 2012a. Formation of Fe-Si-Mn oxyhydroxides at the PACMANUS hydrothermal field, Eastern Manus Basin:mineralogical and geochemical evidence. Journal of Asian Earth Sciences, 60: 130-146.
Zeng Z G, Qi H Y, Chen S, Yin X B, Li Z X. 2014b.Hydrothermal alteration of plagioclase microphenocrysts and glass in basalts from the East Pacific Rise near 13°N:an SEM-EDS study. Science China Earth Sciences, 57(7):1 427-1 437.
Zeng Z G, Qin Y S, Zhai S K. 2001. He, Ne and Ar isotope compositions of fluid inclusions in hydrothermal sulfides from the TAG hydrothermal field Mid-Atlantic Ridge.Science in China Series D: Earth Sciences, 44(3): 221-228.
Zeng Z G, Qin Y S, Zhai S K. 2004. He, Ne and Ar isotope compositions of fluid inclusions in massive sulfides from the Jade hydrothermal field, Okinawa Trough. Acta Oceanologica Sinica, 25(4): 36-42. (in Chinese with English abstract)
Zeng Z G, Wang Q Y, Wang X M, Chen S, Yin X B, Li Z X. 2012b. Geochemistry of abyssal peridotites from the super slow-spreading Southwest Indian Ridge near 65°E:implications for magma source and seawater alteration.Journal of Earth System Science, 121(5): 1 317-1 336.
Zeng Z G, Wang X Y, Chen C T A, Qi H Y. 2018a. Understanding the compositional variability of the major components of hydrothermal plumes in the Okinawa Trough. Geofluids, 2018: 1536352, https://doi.org/10.1155/2018/1536352.
Zeng Z G, Wang X Y, Chen C T A, Yin X B, Chen S, Ma Y Q, Xiao Y K. 2013. Boron isotope compositions of fluids and plumes from the Kueishantao hydrothermal field off northeastern Taiwan: implications for fluid origin and hydrothermal processes. Marine Chemistry, 157: 59-66.
Zeng Z G, Wang X Y, Qi H Y, Zhu B W. 2018b. Arsenic and antimony in hydrothermal plumes from the eastern Manus basin, Papua New Guinea. Geofluids, 2018: 6079586, https://doi.org/10.1155/2018/6079586.
Zeng Z G, Wang X Y, Zhang G L, Yin X B, Chen D G, Wang X M. 2008. Formation of Fe-oxyhydroxides from the East Pacific Rise near latitude 13°N: evidence from mineralogical and geochemical data. Science in China Series D: Earth Sciences, 51(2): 206-215.
Zeng Z G, Yu S X, Wang X Y, Fu Y T, Yin X B, Zhang G L, Wang X M, Chen S. 2010a. Geochemical and isotopic characteristics of volcanic rocks from the northern East China Sea shelf margin and the Okinawa Trough. Acta Oceanologica Sinica, 29(4): 48-61, https://doi.org/10.1007/s13131-010-0050-y.
Zeng Z G, Yu S X, Yin X B, Wang X Y, Zhang G L, Wang X M, Chen D G. 2009. Element enrichment and U-series isotopic characteristics of the hydrothermal sulfides at Jade site in the Okinawa Trough. Science in China Series D: Earth Sciences, 52(7): 913-924.
Zeng Z G. 2011. Submarine Hydrothermal Geology. Science Press, Beijing. 567p. (in Chinese)
Zhang W, Zeng Z G, Cui L K, Yin X B. 2018c. Geochemical constrains on MORB composition and magma sources at East Pacific Rise between 1°S and 2°S. Journal of Ocean University of China, 17(2): 297-304.
Zhang Y X, Zeng Z G, Chen S, Wang X Y, Yin X B. 2018a.New insights into the origin of the bimodal volcanism in the middle Okinawa Trough: not a basalt-rhyolite differentiation process. Frontiers of Earth Science, 12(2):325-338, https://doi.org/10.1007/s11707-017-0638-z.
Zhang Y X, Zeng Z G, Li X H, Yin X B, Wang X Y, Chen S. 2018d. High-potassium volcanic rocks from the Okinawa Trough: implications for a cryptic potassium-rich and DUPAL-like source. Geological Journal, 53(5): 1 755-1 766, https://doi.org/10.1002/gj.3000.
Zhang Y X, Zeng Z G, Qi H Y, Yin X B, Li H, Wang X Y, Chen S. 2018b. Two-stage influences of hydrothermal fluids on pumice near the Iheya North hydrothermal field, Okinawa Trough. Marine Georesources & Geotechnology, 36(4):393-404, https://doi.org/10.1080/1064119X.2017.1318987.
Zhang Y X, Zeng Z G, Wang X Y, Chen S, Yin X B. 2020.Factors controlling the geochemical differences between two types of rhyolites in the middle Okinawa Trough.Geosciences Journal, 24(1): 35-48, https://doi.org/10.1007/s12303-018-0084-2.
Zierenberg R A, Koski R A, Morton J L, Bouse R M. 1993.Genesis of massive sulfide deposits on a sediment-covered spreading center, Escanaba Trough, Southern Gorda Ridge. Economic Geology, 88(8): 2 069-2 098.
Copyright © Haiyang Xuebao