Cite this paper:
WANG Jing, YUAN Dongliang, XU Tengfei, ZHAO Xia. Wind-forced equatorial wave dynamics of the Pacific Ocean during 2014/2015 and 2015/2016 El Niño events[J]. Journal of Oceanology and Limnology, 2020, 38(4): 1123-1137

Wind-forced equatorial wave dynamics of the Pacific Ocean during 2014/2015 and 2015/2016 El Niño events

WANG Jing1,2,3, YUAN Dongliang1,2,3, XU Tengfei4, ZHAO Xia1,2,3
1 CAS Key Laboratory of Ocean Circulation and Waves, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China;
2 Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266071, China;
3 Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China;
4 First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China
Abstract:
The equatorial wave dynamics of interannual sea level variations between 2014/2015 and 2015/2016 El Niño events are compared using the Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics, Institute of Atmospheric Physics Climate Ocean Model (LICOM) forced by the National Centers for Environmental Prediction (NCEP) reanalysis I wind stress and heat flux during 2000-2015. In addition, the LICOM can reproduce the interannual variability of sea surface temperature anomalies (SSTA) and sea level anomalies (SLA) along the equator over the Pacific Ocean in comparison with the Hadley center and altimetric data well. We extracted the equatorial wave coefficients of LICOM simulation to get the contribution to SLA by multiplying the meridional wave structure. During 2014/2015 El Niño event, upwelling equatorial Kelvin waves from the western boundary in April 2014 reach the eastern Pacific Ocean, which weakened SLA in the eastern Pacific Ocean. However, no upwelling equatorial Kelvin waves from the western boundary of the Pacific Ocean could reach the eastern boundary during the 2015/2016 El Niño event. Linear wave model results also demonstrate that upwelling equatorial Kelvin waves in both 2014/2015 and 2015/2016 from the western boundary can reach the eastern boundary. However, the contribution from stronger westerly anomalies forced downwelling equatorial Kelvin waves overwhelmed that from the upwelling equatorial Kelvin waves from the western boundary in 2015. Therefore, the western boundary reflection and weak westerly wind burst inhibited the growth of the 2014/2015 El Niño event. The disclosed equatorial wave dynamics are important to the simulation and prediction of ENSO events in future studies.
Key words:    Pacific Ocean    equatorial waves    western boundary reflection    El Niño   
Received: 2019-12-20   Revised: 2020-03-16
Tools
PDF (9474 KB) Free
Print this page
Add to favorites
Email this article to others
Authors
Articles by WANG Jing
Articles by YUAN Dongliang
Articles by XU Tengfei
Articles by ZHAO Xia
References:
Battisti D S, Hirst A C. 1989. Interannual variability in a tropical atmosphere-ocean model: influence of the basic state, ocean geometry and nonlinearity. Journal of the Atmospheric Sciences, 46(12): 1 687-1 712.
Boulanger J P, Menkes C. 1999. Long equatorial wave reflection in the Pacific Ocean from TOPEX/POSEIDON data during the 1992-1998 period, Climate Dynamics, 15(3): 205-225.
Boyer T P, Antonov J I, Baranova O K, Garcia H E, Johnson D R, Mishonov A V, O'Brien T D, Seidov D, Smolyar I, Zweng M M, Paver C R, Locarnini R A, Reagan J R, Forgy C, Grodsky A, Levitus S. World Ocean Database 2013.U.S. Government Printing Office, Washington, USA. 209p.
Chelton D B, DeSzoeke R A, Schlax M G, El Naggar K, Siwertz N. 1998. Geographical variability of the first baroclinic Rossby radius of deformation. Journal of Physical Oceanography, 28(3): 433-460.
Chen D K, Lian T, Fu C B, Cane M A, Tang Y M, Murtugudde R, Song X S, Wu Q Y, Zhou L. 2015. Strong influence of westerly wind bursts on El Niño diversity. Nature Geoscience, 8(5): 339-345.
Clarke A J. 1983. The reflection of equatorial waves from oceanic boundaries. Journal of Physical Oceanography, 13(7): 1 193-1 207.
Clarke A J. 1991. On the reflection and transmission of lowfrequency energy at the irregular western Pacific Ocean boundary. Journal of Geophysical Research, 96(S01):3 289-3 305.
Delcroix T, Dewitte B, duPenhoat Y, Masia F, Picaut J. 2000.Equatorial waves and warm pool displacements during the 1992-1998 El Niño Southern Oscillation events:Observation and modeling, Journal of Geophysical Research-Oceans, 105(C11): 26 045-26 062.
Dewitte B, Reverdin G, Maes C. 1999. Vertical structure of an OGCM simulation of the Equatorial Pacific in 1985-94.Journal of Physical Oceanography, 29(7): 1 542-1 570.
Dewitte B, Illig S, Parent L, DuPenhoat Y, Gourdeau L, Verron J. 2003. Tropical Pacific baroclinic mode contribution and associated long waves for the 1994-1999 period from an assimilation experiment with altimetric data, Journal of Geophysical Research-Oceans, 108(C4), https://doi.org/Artn312110.1029/2002jc001362.
Gent P R, Luyten J R. 1985. How much energy propagates vertically in the equatorial oceans? Journal of Physical Oceanography, 15(7): 997-1 007.
Hu S N, Fedorov A V. 2016. Exceptionally strong easterly wind burst stalling El Niño of 2014. Proceedings of the National Academy of Sciences of the United States of America, 113(8): 2 005-2 010.
Kessler W S, McCreary J P. 1993. The annual wind-driven Rossby wave in the subthermocline equatorial Pacific.Journal of Physical Oceanography, 23(6): 1 192-1 207.
Kessler W S. 1990. Observations of long Rossby waves in the northern tropical Pacific. Journal of Geophysical Research, 95(C4): 5 183-5 217.
Lengaigne M, Guilyardi E, Boulanger J P, Menkes C, Delecluse P, Inness P, Cole J, Slingo J. 2004. Triggering of El Niño by westerly wind events in a coupled general circulation model. Climate Dynamics, 23(6): 601-620.
Levine A F Z, McPhaden M J. 2016. How the July 2014 easterly wind burst gave the 2015-2016 El Niño a head start. Geophysical Research Letters, 43(12): 6 503-6 510.
Levitus S, Boyer T P, O’Brien T., Antonov J, Stephens C, Stathopolos L, Johnson D, and Gelfeld R. 1998: World Ocean Database 1998. Vol. 1, Introduction, NOAA Atlas NESDIS 18, National Oceanic and Atmopheric Administration. Silver Spring, MD., 346pp.
Levitus S, Boyer T P. 1994. World Ocean Atlas 1994. Volumn 4: Temperature. NOAA Atlas NESDIS 3. U.S. Department of Commerce, Washington. 117p.
Liu H L, Yu Y Q, Li W, Zhang X H. 2004a. LASG/IAP Climate System Ocean Model (LICOM1, 0): User Manual.Science Publication, Beijing, China. 107p. (in Chinese)
Liu H L, Zhang X H, Li W, Yu Y Q, Yu R C. 2004b. An eddypermitting oceanic general circulation model and its preliminary evaluation. Advances in Atmospheric Sciences, 21(5): 675-690.
McCreary J P. 1981. A linear stratified ocean model of the equatorial undercurrent. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 298(1444): 603-635.
McPhaden M J, Yu X R. 1999. Equatorial waves and the 1997-98 El Niño. Geophysical Research Letters, 26(19): 2 961-2 964.
McPhaden M J. 1999. Genesis and evolution of the 1997-98 El Niño. Science, 283(5404): 950-954.
McPhaden M J. 2015. Playing hide and seek with El Niño.Nature Climate Change, 5(9): 791-795.
Menkes C E, Lengaigne M, Vialard J, Puy M, Marchesiello P, Cravatte S, Cambon G. 2014. About the role of Westerly Wind events in the possible development of an El Niño in 2014. Geophysical Research Letters, 41(18): 6 476-6 483.
Pacanowski R C, Philander S G H. 1981. Parameterization of vertical mixing in numerical models of tropical oceans.Journal of Physical Oceanography, 11(11): 1 443-1 451.
Penland C, Sardeshmukh P D. 1995. The optimal growth of tropical sea surface temperature anomalies. Journal of Climate, 8(8): 1 999-2 024.
Penland C. 1996. A stochastic model of IndoPacific sea surface temperature anomalies. Physica D: Nonlinear Phenomena, 98(2-4): 534-558.
Picaut J, Masia F, du Penhoat Y. 1997. An advective-reflective conceptual model for the oscillatory nature of the ENSO.Science, 277(5326): 663-666.
Rayner N A, Parker D E, Horton E B, Folland C K, Alexander L V, Rowell D P, Kent E C, Kaplan A. 2003. Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century.Journal of Geophysical Research, 108(D14): 4 407, https://doi.org/10.1029/2002jd002670.
Rothstein L M, Moore D W, McCreary J P. 1985. Interior reflections of a periodically forced equatorial Kelvin wave. Journal of Physical Oceanography, 15(7): 985-996.
Santoso A, McPhaden M J, Cai W J. 2017. The defining characteristics of ENSO extremes and the strong 2015/2016 El Niño. Reviews of Geophysics, 55(4): 1 079-1 129, https://doi.org/10.1002/2017rg000560.
Schopf P S, Suarez M J. 1988. Vacillations in a coupled oceanatmosphere model. Journal of the Atmospheric Sciences, 45(3): 549-566.
Spall M A, Pedlosky J. 2005. Reflection and transmission of equatorial Rossby waves. Journal of Physical Oceanography, 35(3): 363-373.
Wang J, Yuan D L. 2015. Roles of western and eastern boundary reflections in the interannual sea level variations during negative Indian Ocean dipole events. Journal of Physical Oceanography, 45(7): 1 804-1 821.
Wang Z, Yuan D L. 2012. Nonlinear dynamics of two western boundary currents colliding at a gap. Journal of Physical Oceanography, 42(11): 2 030-2 040.
Wang Z, Yuan D L. 2014. Multiple equilibria and hysteresis of two unequal-transport western boundary currents colliding at a gap. Journal of Physical Oceanography, 44(7): 1 873-1 885.
Weisberg R H, Wang C Z. 1997. A western Pacific oscillator paradigm for the El Niño-Southern oscillation.Geophysical Research Letters, 24(7): 779-782.
Yu L S, Weller R A, Liu W T. 2013. Case analysis of a role of ENSO in regulating the generation of westerly wind bursts in the western equatorial Pacific. Journal of Geophysical Research, 108(C4): 3 128, https://doi.org/10.1029/2002JC001498.
Yuan D L, Han W Q. 2006. Roles of equatorial waves and western boundary reflection in the seasonal circulation of the equatorial Indian Ocean. Journal of Physical Oceanography, 36(5): 930-944.
Yuan D L, Liu H L. 2009. Long-wave dynamics of sea level variations during Indian Ocean dipole events. Journal of Physical Oceanography, 39(5): 1 115-1 132.
Yuan D L, Rienecker M M, Schopf P S. 2004. Long wave dynamics of the interannual variability in a numerical hindcast of the equatorial Pacific Ocean circulation during the 1990s. Journal of Geophysical Research, 109(C5):C05019.
Zhao X, Yuan D L, Yang G, Wang J, Liu H L, Zhang R F, Han W Q. 2019. Interannual variability and dynamics of intraseasonal wind rectification in the equatorial Pacific Ocean. Climate Dynamics, 52(7): 4 351-4 369, https://doi.org/10.1007/s00382-018-4383-0.
Copyright © Haiyang Xuebao