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  Abstract            Ocean internal waves appear as irregular bright and dark stripes on synthetic aperture radar 
(SAR) remote sensing images. Ocean internal waves detection in SAR images consequently constituted 
a diffi  cult and popular research topic. In this paper, ocean internal waves are detected in SAR images by 
employing the faster regions with convolutional neural network features (Faster R-CNN) framework; for 
this purpose, 888 internal wave samples are utilized to train the convolutional network and identify internal 
waves. The experimental results demonstrate a 94.78% recognition rate for internal waves, and the average 
detection speed is 0.22 s/image. In addition, the detection results of internal wave samples under diff erent 
conditions are analyzed. This paper lays a foundation for detecting ocean internal waves using convolutional 
neural networks. 

  Keyword :   ocean internal waves; faster regions with convolutional neural network features (Faster R-CNN); 
convolutional neural network; synthetic aperture radar (SAR) image; region proposal network 
(RPN) 

 1 INTRODUCTION 

 Internal waves are a type of kinetic phenomenon in 
the ocean. To form internal waves, the seawater 
density must be stably stratifi ed, and disturbance 
energy must be present (Du et al., 2001). Field 
observations have shown that internal waves can 
reach a maximum amplitude of 240 m (Huang et al., 
2016), which can seriously threaten the navigability 
of underwater submarines. Therefore, the study of 
internal waves is of great signifi cance. Internal waves 
contain a substantial amount of energy and can, 
therefore, change the depth of the seawater transition 
layer, causing changes in the underwater sound fi eld 
and aff ecting underwater communication. In addition, 
ocean internal waves can have far-reaching eff ects on 
research into marine sediments, marine fi sheries, 
ocean acoustics, and other disciplines in the shelf sea 
area. 

 Remote sensing constitutes the primary means 
with which internal waves are monitored over a wide 
range. Ocean internal waves appear as bright and dark 
irregular stripes in remote sensing images; 

unfortunately, these stripes are easily confused with 
other features in remote sensing images (vortices, 
ship wakes, wind, wave, etc.). Given the richness and 
extent of existing satellite remote sensing data, 
traditional manual interpretation methods are time-
consuming and laborious, and thus, it is diffi  cult to 
detect internal waves manually, which is accompanied 
by a large workload. Therefore, it is necessary to 
develop an automated technology to detect internal 
waves, thereby accelerating the processing of relevant 
data through the extraction and recognition of target 
features. 

 To detect internal waves, Hogan et al. (2002) used 
the Hough transform to extract the fringes of ocean 
internal waves from synthetic aperture radar (SAR) 
images. However, because the Hough transform is 
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used to detect mainly straight lines, this approach is 
not ideal for identifying ocean internal waves in 
remote sensing images. As an alternative, the wavelet 
transform has multiresolution characteristics; with this 
technique, image noise (sea clutter) is concentrated at 
high frequencies, while the signals of internal waves 
are distributed at lower frequencies. Accordingly, 
Rödenas and Garello (1997) and Rodenas and Garello 
(1998) used the wavelet transform method to detect 
ocean internal waves in remote sensing images. 
Subsequently, Marghany (1999) and Kang et al. (2008) 
used two-dimensional empirical mode decomposition 
(2D-EMD) to decompose remote sensing images into 
diff erent intrinsic mode functions (IMFs) to distinguish 
internal waves. 

 The convolutional neural network (CNN) is a type 
of artifi cial neural network. CNNs have been shown 
to exhibit excellent feature learning abilities, and the 
features learned by these networks can more 
accurately describe the nature of data, which is 
conducive to performing visualization or classifi cation 
tasks. As a consequence, CNNs boast great advantages 
in terms of their target detection accuracy and speed. 
Girshick et al. (2014) initially proposed the regions 
with CNN features (R-CNN) framework structure, 
which fi rst uses the selective search (SS) algorithm to 
extract the proposed region and then employs a CNN 
model to extract the target features from the proposed 
region and classifi es those regional features with a 
classifi er, such as a support vector machine (SVM); 
then, this algorithm uses bounding box regression on 
the classifi ed proposed region, thereby increasing the 
accuracy of the bracketed target. However, the 
training of the R-CNN model requires multiple steps, 
and R-CNN models suff er from a slow detection 
speed. To ameliorate these problems, Girshick (2015) 
further proposed the Fast R-CNN framework, which 
performs only feature extraction for each picture 
using the proposed region mapped onto the feature 
map after the convolutional layer, after which the 
classifi cation and regression tasks are completed. 
This greatly reduces the number of redundant 
calculations, which improves both the detection speed 
and detection performance. Subsequently, Ren et al. 
(2015) proposed the Faster R-CNN framework, with 
which the extraction of the region proposal network 
(RPN) is also completed by a CNN, but the extraction 
network and the target detection network share a 
feature extraction layer to improve the detection 
speed and achieve a better detection performance. 

 To date, the use of deep learning to detect ocean 

internal waves has not been documented. In this 
paper, ocean internal waves in SAR images are 
detected within the Faster R-CNN framework, and a 
sample library of SAR images containing internal 
waves is constructed. Accordingly, CNNs are 
successfully employed to detect ocean internal waves 
in SAR images, and the results of detecting internal 
waves at diff erent scales and stripes are analyzed. 

 2 ALGORITHM INTRODUCTION 

 The Faster R-CNN framework consists of two 
networks, an RPN and a Fast R-CNN. In the latter, an 
image segmentation method (such as the SS method) 
is not used to extract the candidate regions from the 
input image; rather, an RPN is added to the 
convolutional network. To share the convolutional 
layer between both networks, a pre-trained model is 
used to form a unifi ed network through cross-training 
to complete the target detection task. 

 2.1 Fast R-CNN 

 The Fast R-CNN network structure is shown in 
Fig.1. An image of any size is obtained through the 
convolutional layer; then, after the feature is extracted 
by the convolutional layer, a region of interest (RoI) 
(He et al., 2015) pooling layer is added to the network 
the coordinates of the proposed region to the feature 
map. Because the fully connected layer requires a 
fi xed-size input, the parameters ‘H’ and ‘W’ are set in 
the RoI pooling layer, and the feature map of each 
proposed region is fi xed to a uniform scale. These 
feature maps obtain a fi xed-size feature vector through 
the fully connected layer. Additionally, the Fast 
R-CNN network replaces the last fully connected 
layer with two output layers: a classifi cation layer and 
a regression layer. The former outputs the categorical 
probability of each border, while the latter outputs the 
corresponding coordinates, uses non-maximum 
suppression (NMS) to remove overlapping bounding 
boxes, and fi nally outputs the bounding boxes with 
the highest score after applying a regression correction 
in each category. 

 2.2 RPN 

 An RPN is a fully convolutional network (FCN) 
constructed through backpropagation and stochastic 
gradient descent (SGD) end-to-end training. The 
network structure of an RPN, which is shown in Fig.2, 
uses three box areas (128 2 , 256 2 , 512 2 ) and three 
aspect ratios (1:1, 1:2, 2:1) for a total of nine sliding 
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windows centered on each point within the feature 
map. The RPN takes an image with an arbitrary size 
as the input, extracts the target region, and outputs a 
target score for each region. To generate the proposed 
region, a small network is slid over the convolutional 
feature map outputted by the last layer of the 
convolutional layer, and the features collected by 
diff erent types of windows are reduced to a fi xed 
dimension as the input of two congruence layers of 
the same level (the box regression layer and the box-
classifi cation layer). 

 To train the RPN, we assign a binary label (yes or 
no) to each anchor, and we assign positive labels to 
both types of anchors. One type of anchor exhibits an 
intersection-over-union (IoU) overlap with a ground-
truth box region, while the other type demonstrates an 
IoU overlap with any ground-truth box region higher 
than 0.7. Additionally, the anchor that overlaps with 
the IoU of the ground-truth box area by less than 
0.3 is assigned a negative label. 

 According to the above defi nition, the multitask 
loss function of the RPN is expressed as, 
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 where  i  is the index of a reference area in the mini-
batch and  P  i  is the prediction probability that the 
reference area  i  is the target. If the reference area is 
positive, the ground-truth box tag  P  i  *  is 1; if the 
reference area is negative,  P  i  *    is 0; t i  is a vector 
containing the four parameter coordinates of the 
prediction region, and  t  i  *  is the coordinate vector of the 
ground-truth box region corresponding to the positive 
reference region.  λ  represents the balance factor used 

to balance the weights of the two loss functions. 
 The classifi cation loss  L  cls  is a logarithmic loss 

function of two categories (target/nontarget) 
determined by the following equation, 

  L  cls ( p  i ,  p  i  * )=-log[ p  i  p  i  * +(1– p  i  * )(1– p  i )]. 
 For regression loss, the above formula is expressed 

as, 
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 Fig.1 Fast R-CNN framework 
 Fast R-CNN consists of input images, convolutional layer, and fully connected layer. The input image is outputted to the feature map by convolution 
and pooling at the convolutional layer, then Faster R-CNN output the target score at “cls layer” and position at “reg layer”. “Conv layer” represents the 
convolutional layer, “FC” represents the fully connected layer. 

Cls layer Reg layer

Conv feature map

  

  Anchor boxes

Sliding window

 Fig.2 Region proposal network (RPN) framework 
 RPN use diff erent scale sliding windows by anchor boxes to extract proposed 
region on the feature map, and output target score at classifi cation layer (“cls 
layer”) and target position at region layer (“reg layer”). The proposed region 
generated by RPN is brought into the fully connected layer of Fast R-CNN. 
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 The main purpose of the above formula is to be 
more robust both to outliers and to the magnitude of 
the control gradient during training. The term ( P  i  *  L  reg ) 
indicates either that there is only a positive reference 
region ( P  i  * =1) for regression loss or that there is no 
other case ( P  i  * =0). The outputs of the classifi cation 
layer and the regression layer are composed of { P  i } 
and { t  i }, respectively, which are normalized by  N  cls  
and  N  reg  and a balance coeffi  cient  λ . For regression, 
the following four coordinates are used: 
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 where  x ,  y ,  w , and  h  indicate that the center coordinates 
( x ,  y ) of the zone are wide and high. The variables  x , 
 x  a , and  x  *  refer to the coordinates of the prediction 
region, the reference region, and the ground-truth box 
region (likewise for  y ,  w , and  h ). 

 The candidate frames extracted by the RPN have 
overlapping portions; these overlapping candidate 
blocks are removed by NMS. Finally, the N candidate 
frames before the score are output as the input of the 
RoI layer. 

 2.3 Sharing convolutional features for RPN and 
Fast R-CNN 

 Both RPN and Fast R-CNN are convolutional 
networks. The following four steps are used to 
implement two network shared convolutional layer to 
form a unifi ed network. In the fi rst step, the pre-
trained model is used to train RPN to generate 
proposed region. In the second step, Fast R-CNN 
using the regions generated by the RPN and pre-
trained model completes the detection task. In the 
third step, the shared conv layers are used to initialize 
RPN training, and only fi ne-tune the layers unique to 
RPN. Now the two networks share a convolutional 
layer. Finally, the fc layer of the Fast R-CNN is fi ne-
tuned by keeping the shared convolutional layer fi xed. 
As such, both networks share the same convolutional 
layer and form a unifi ed network. 

 3 RSULT AND DISCUSSION 
 3.1 Data introduction 

 In this paper, we construct an internal wave 
database consisting of 466 Environmental Satellite 
(ENVISAT) advanced synthetic aperture radar 

(ASAR) images from the South China Sea region 
acquired from 2003 to 2012. First, the remote sensing 
images are preprocessed, and the brightness is 
adjusted. Then, we extract each image containing the 
eff ective area of internal waves. Finally, 946 partial 
images with diff erent internal wave morphologies and 
scales are extracted as samples for the database. The 
minimum image size in the database is approximately 
240×240, and the maximum image size is 
approximately 1 400×1 300. Among the data samples, 
58 partial images extracted from 42 remote sensing 
images are used as the test set evaluation network, 
and 888 partial images are input as training data to the 
convolutional network to learn the internal wave 
characteristics. 

 3.2 Threshold determination 

 The Faster R-CNN framework has a good feature 
learning ability. This paper aims mainly to detect 
ocean internal waves by debugging various network 
parameters, the selection of which aff ects the quality 
of the overall test results. Accordingly, it is necessary 
to debug these parameters several times to optimize 
the network and thus to optimize the detection results. 
In this paper, the Zeiler and Fergus net (ZFnet) (Zeiler 
and Fergus, 2014) is used to train the data. Through 
multiple experiments, the test set demonstrates the 
best detection eff ect when the ratio of training data to 
verifi cation data is set to 0.5. In addition, the fi nal 
network parameters determined in this paper are as 
follows: the momentum is 0.9, the weight attenuation 
is 0.000 5, the learning rate is 0.000 1; in addition, the 
learning rate must be divided by 10 after 20 k 
iterations, and 10 k iterations must be performed 
thereafter. 

 The Faster R-CNN outputs the detected target class 
and precision in the input image through the precision-
recall (PR) curve, as shown in Fig.4b, in which the 
internal waves have a precision of 0.915. Additionally, 
the output shows a target border that is larger than the 
precision threshold. If the precision threshold is set 
too low, although more targets will be displayed, the 
target area in which the error is displayed will be 
included, and the number of false alarms will also 
increase. If the precision threshold is set too high, 
although the number of false alarms may be reduced, 
the number of detected targets may also decrease. For 
the trained network, the test results must not only 
ensure a high recognition rate but also have a low 
false alarm rate. Therefore, to meet the above 
conditions, the precision threshold interval was 
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determined to be 0.05 after conducting 20 sets of 
experiments, and the fi gure of merit (FoM) curve was 
drawn under diff erent precision threshold conditions 
(Ai et al., 2009). The expression for calculating the 
FoM is FoM= N  tt /( N  fa + N  gt ), where  N  tt  is the correct 
number of detection targets in the detection results, 
 N  fa    is the number of false alarm targets, and  N  gt  is the 
actual number of targets. According to Fig.3, the 
detection result was ideal when the precision threshold 
was between 0.30 and 0.35; furthermore, the number 
of false alarms was small while satisfying the number 
of targets needed to obtain the correct detection 
results. 

 Further comparison shows that the overall results 
were optimal with a precision of 0.33; the results are 
shown in Table 1. However, the internal wave shape 
was more complicated. In the test results, some 
internal waves were signifi cantly diff erent from the 
samples in the training database, resulting in a lower 
detection precision. However, among the results 
below the threshold, most of the detected targets 

either were false alarms or bordered surrounding 
inaccurate targets, and the correctly detected targets 
composed a minority. In addition, by calculating the 
time from the input to the output of the image in the 
network, including the time spent extracting the 
candidate region, extracting the feature from the 
convolutional network, classifying the feature, and 
displaying the target region after regression, the 
average detection speed was 0.22 s/image with a GPU 
(this model was trained on an HP Z640, Intel Xeon 
CPU, NVIDIA Quadro K2200 GPU using the Caff e 
framework). 

 3.3 Method suitability 

 In this paper, internal waves of diff erent shapes, 
including fringes at both large and small scales as 
well as wave packet groups, were analyzed. According 
to the marked region and precision, some types of 
internal waves were accurately detected. 

 3.3.1 Test results for diff erent stripes 

 Figure 4b shows a SAR image from May 22, 2008 
at 1401 UTC around the northern part of the South 
China Sea, and Fig.4c shows a SAR image from 
August 28, 2006 at 1407 UTC near the Natuna Islands. 
The internal waves of two fi gures propagate from east 
to west. In Fig.4b–c, “iw” denotes internal waves, and 
0.758 represents the precision of the borders of the 
detection frame. Because internal solitary waves are 
small stripe and the scale is large, it is easy to 
distinguish the internal waves from the background, 
thereby increasing the detection precision. However, 
compared with a more defi ned target such as a ship, 
the internal waves do not have clear edges in this 
image, and the edges of the internal waves are easily 
confused with the background. Therefore, for the 
detection of internal waves, the deviation of the 
detection frame within a certain range is reasonable. 
Figure 4b has a higher precision result, while the area 
marked in Fig.4c is more accurate. In general, due to 
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 Fig.3 Changes in the FoM curve with the test precision 
threshold 
 To evaluate the test results, the precision threshold interval was 
determined to be 0.05 after conducting 20 sets of experiments, then 
the FoM values are obtained from the curve to determine the ideal 
precision threshold interval. 

 Table 1 Changes in the FoM value with the test precision threshold of 0.30–0.35 

 Number of image  Number of target  Precision threshold  Number of target detected  Missing target number  Number of false alarm target  FoM 

 58  134  0.30  127  7  8  0.89 

 58  134  0.31  127  7  8  0.89 

 58  134  0.32  127  7  8  0.89 

 58  134  0.33  127  7  7  0.90 

 58  134  0.34  126  8  7  0.89 

 58  134  0.35  126  8  7  0.89 
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 Fig.4 Images location and test results for diff erent stripe 
 Remote sensing images are a quick look in this paper, so there is no latitude and longitude information. “iw” denotes internal waves; Numbers and white 
borders represent the precision and the borders for test results. a. images location of Fig.4b–g; b, c. test results of internal solitary waves; d, e. test results of 
wave packet; f, g. test results of wave packet group. 
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the small stripes in Fig.4b–c, the internal wave shape 
is not complicated, and thus, the detection frame can 
more accurately surround the internal waves. 

 Figure 4d shows an ASAR image from November 
24, 2011 at 1401 UTC around the northern part of the 
South China Sea, and Fig.4e shows an ASAR image 
from November 13, 2011 at 0240 UTC near the 
Natuna Islands. In Fig.4d–e, the internal waves form 
wave packet propagating eastward and westward, and 
the scale is smaller than that in Fig.4b–c. Since wave 
packets has many stripes, it is easy to distinguish the 
internal waves from the background. 

 Figure 4f shows an ASAR image from May 18, 
2006 at 1407 UTC around Dongsha Island, and Fig.4g 
shows an ASAR image from February 11, 2012 at 
0240 UTC near the Natuna Islands. The internal waves 
form wave packet group due to intersection and 
overlap in Fig.4f–g, and propagate in diff erent 
directions. Due to the intersections of these wave 
packets, the wave packet groups cannot be distinguished 
according to the edges of each wave packet. As a 
consequence, when the database is created, several 
borders are created over the entire wave packet group. 
Therefore, overlapping borders appear in the detection 
results, but the detection precision is high. 

 3.3.2 Test results at diff erent scales 

 Figure 5b–c show an ASAR image from December 
12, 2011 at 1414 UTC over the Sulu Sea, and the 
internal waves propagate from the southeast to the 
northwest. The test result in Fig.5b has high precision 
and accurate area, but the internal waves of Fig.5c is 
marked by three regions. Some internal waves occur 
along the edge of the remote sensing image; thus, only 
part of the area can be observed, and only a fragment of 
the entire wave packet can be extracted when the 
database is created. Inevitably, in the database, such 
internal wave samples account for a notable proportion 
of all samples; if these data are removed, the reduction 
in the sample number would be detrimental to the 
ability of the network to learn how to detect internal 
waves. In addition, because fewer internal waves were 
observed in the Sulu Sea area during the study period 
of this paper, most of the samples contain fragments of 
the entire wave packet. Figure 5c shows a wave packet 
that is delineated by three borders because the network 
produced through the training data is closer to the inner 
region of the database than to a partial detection region 
relative to the entire region. We can eff ectively solve 
this problem by increasing the number of data samples. 
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waves. 
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 Figure 5d shows an ASAR image from October 25, 
2011 at 0234 UTC over the northern part of the South 
China Sea. The propagation direction is from southeast 
to northwest, the detection precision is 0.429. 
According to the measured spacing between the 
internal wave stripes, the minimum spacing in Fig.5d 
is 2 pixels, which is the smallest cell size that can be 
detected in this paper. The internal waves have no 
clear edges compared with more defi ned targets such 
as airplanes or ships; moreover, at such a small scale, 
it is easy to confuse these types of internal waves with 
the background in remote sensing images, and it is 
diffi  cult to observe the occurrence area. Figure 5e 
shows that the small-scale internal waves appear to 

have lower precision than larger-scale internal waves, 
and the detection frame is larger than the actual 
occurrence area. Therefore, in the detection results, 
these small-scale internal waves appear to have lower 
precision than the larger-scale internal waves detected 
above, and the detection frame is larger than the actual 
occurrence area. We should further research to solve 
the problems posed by this situation. 

 3.3.3 Test results for ship wakes and front 

 Figure 6a shows a Sentinel-1 image from January 
15, 2016 at 1133 UTC near the Straits of Malacca. 
The internal waves propagate eastward. The bright 
spots on the left side of the image are ships, which 
produces a straight trail originating from the stern. 
The internal wave detection results can accurately 
surround the internal wave-generating region. In 
addition, the network does not consider the traces 
originating from ship wakes on the left side of the 
image to be internal waves, showing that the Faster 
R-CNN can not only accurately detect an internal 
wave but also distinguish the features in a remote 
sensing image that are easily confused with internal 
waves. Figure 6b shows a Sentinel-1 image from 
January 30, 2016 at 2149 UTC over the Celebes Sea, 
and the precision of boat front is 0.251. We set the 
precision threshold to 0.33, so front is not detected 
after setting the precision threshold. 

 3.3.4 False alarm goal 

 Figure 7b shows an ASAR image from May 15, 
2006 at 1401 UTC around the Philippines, and Fig.7c 
shows an ASAR image from August 02, 2005 at 0238 
UTC around the northeastern Taiwan, China. The test 
results show that our algorithm in this paper 
incorrectly detected the river estuary and land error as 
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internal waves. For such errors, we should further 
research and resolution. 

 4 CONCLUSION 

 In this paper, ASAR remote sensing images are 
used to select internal wave samples at various scales, 
and these images are preprocessed to produce an 
internal wave database. Moreover, the detection of 
internal waves in SAR images within the Faster 
R-CNN framework is realized in combination with 
the constructed database. The experimental results 
show that the proposed algorithm can accurately 
frame the occurrence areas containing both internal 
wave stripes appearing at diff erent scales and large-
scale internal wave modes with high precision. At the 
same time, suffi  cient target detection can be achieved 
for small-scale internal waves. In some test results, 
the case in which a single large-scale wave packet is 
marked by two borders can be eff ectively resolved by 
expanding the number of data samples. In addition, in 
a remote sensing image, boat wakes can be easily 
confused with the shape of an internal wave; however, 
the Faster R-CNN can not only eff ectively avoid the 
identifi cation of such aliasing features but also 
delineate internal wave-generating regions accurately. 
And we can also distinguish the front by the Faster 
R-CNN in this paper. However, some mis-detected 
targets have a morphology similar to those of internal 
waves, causing the network to incorrectly detect the 
internal waves. CNNs have broad application 
prospects in the detection of internal waves within 
SAR images; however, for target detection tasks, the 
Faster R-CNN framework achieves superior detection 
results relative to other methods. 

 5 DATA AVAILABILITY STATEMENT 

 The authors declare that the data supporting the 
fi ndings of this study are available within the article. 

 References  

 Ai J Q, Qi X Y, Yu W D. 2009. Improved two parameter CFAR 
ship detection algorithm in SAR images.  Journal   of  

 Electronics   &   Information   Technology ,  31 (12): 2 881-2 
885. (in Chinese with English abstract) 

 Du T, Wu W, Fang X H. 2001. The generation and distribution 
of ocean internal waves.  Marine   Sciences ,  25 (4): 25-28. 
(in Chinese) 

 Girshick R, Donahue J, Darrell T, Malik J. 2014. Rich feature 
hierarchies for accurate object detection and semantic 
segmentation.  In :  Proceedings   of   2014   IEEE   Conference  
 on   Computer   Vision   and   Pattern   Recognition .  IEEE , 
 Columbus ,  OH ,  USA . 

 Girshick R. 2015. Fast R-CNN.  In :  Proceedings   of   2015   IEEE  
 International   Conference   on   Computer   Vision .  IEEE , 
 Santiago ,  Chile .  

 He K M, Zhang X Y, Ren S Q, Sun J. 2015. Spatial pyramid 
pooling in deep convolutional networks for visual 
recognition.  IEEE   Transactions   on   Pattern   Analysis   and  
 Machine   Intelligence ,  37 (9): 1 904-1 916. 

 Hogan G G, Marsden J B, Henry J C. 2002. On the detection of 
internal waves in high resolution SAR imagery using the 
Hough transform.  In :  Proceedings   of   the   OCEANS   91  
 Proceedings .  IEEE ,  Honolulu ,  Hawaii ,  USA . 

 Huang X D, Chen Z H, Zhao W, Zhang Z W, Zhou C, Yang Q 
X, Tian J W. 2016. An extreme internal solitary wave 
event observed in the northern South China Sea.  Scientifi c  
 Reports ,  6 : 30041. 

 Kang J, Zhang J, Song P J, Meng J M. 2008. The application of 
two-dimensional EMD to extracting internal waves in 
SAR images.  In :  Proceedings   of   2008   International  
 Conference   on   Computer   Science   and   Software  
 Engineering .  IEEE ,  Hubei ,  China . p.953-956. 

 Marghany M. 1999. Internal wave detection and wavelength 
estimation.  In :  Proceedings   of   1999 . IEEE, Hamburg, 
Germany. 

 Ren S Q, He K M, Girshick R, Sun J. 2015. Faster R-CNN: 
towards real-time object detection with region proposal 
networks.  IEEE   Transactions   on   Pattern   Analysis   and  
 Machine   Intelligence ,  39 (6): 1 137-1 149. 

 Rödenas J A, Garello R. 1997. Wavelet analysis in SAR ocean 
image profi les for internal wave detection and wavelength 
estimation.  IEEE   Transactions   on   Geoscience   and   Remote  
 Sensing ,  35 (4): 933-945. 

 Rodenas J A, Garello R. 1998. Internal wave detection and 
location in SAR images using wavelet transform.  IEEE  
 Transactions   on   Geoscience   and   Remote   Sensing ,  36 (5): 
1 494-1 507. 

 Zeiler M D, Fergus R. 2014.  In : Proceedings of the 13 th  
European Conference on Computer Vision. Springer, 
Zurich, Switzerland. p.818-833. 


